EDGE CONNECTIVITY IN GRAPHS: AN EXPANSION THEOREM
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Abstract.

We show that if a graph is k-edge-connected, and we adjoin to it another

graph satisfying a “contracted diameter < 2” condition, with minimal degree > k, and
some natural hypothesis on the edges connecting one graph to the other, the resulting

graph is also k-edge-connected.

1 INTRODUCTION

Let G be a simple graph (i.e. a graph with no
loops, no multiple edges) with vertex set V(G)
and edge set E(G) (we follow in notation the
book [1]). Given A,B C V(G), [A,B] is the
set of edges of the form ab, joining a vertex
a € A to a vertex b € B. As we consider edges
without orientation, [A4, B] = [B, A]. Abusing
of notation, for v € V(G), A C V(G), we write
[v, A] instead of [{v}, A]. The degree of a ver-
tex v € V(G) is degs(v) = |[v,V(G)]|- The
neighbourhood of a vertex v, N(v), is the set
of vertexes w such that vw € E(G). Given
A C V(G), G(A) is the graph G’ such that
V(G') = A and E(G') is the set of edges
in E(G) having both endpoints in A. Given
v,w € V(G), dg(v,w) is the distance in G from
v to w, that is the minimum length of a path
from v to w. If v € V(G),A C V(G) we set

dg(v, A) = minge 4 dg(v, w).

An edge cut in G is a set of edges [S, S], where
S C V(G) is non void, and § = V(G) \ S is
also assumed to be non void.

The edge-connectivity of G, k'(G), is the min-
imum cardinal of the cuts in G. We say that
G is k-edge-connected if ¥'(G) > k. Menger’s
theorem has as a consequence that given two
vertices v,w in V(G), if G is k-edge-connected
there are at least k-edge-disjoint paths joining
v to w (see [1], pp.153-169).

In this paper we address the following expan-
sion problem: given a k-edge-connected graph
G2, give conditions under which the result of
adjoining to G2 a graph G will be also k edge-
connected (see Corollary 1 below).

2 AN EXPANSION THEOREM

Let G be a simple graph. Let V3 C V(G), Vo =



V(G) \ V1, and set G1 = G(Vl),GQ = G(‘/Q)
We assume in the sequel that V; and V5 are non
void. We define, for x,y € Vi, the contracted
distance

(5(55,’!/) = min{dGl ($ay)1 dG(x’ V2) + dG(ya‘/?)}

and for x € V,y € Vo
5(551?/) = 5(?/"7:) = dG("EaVé)

If z € Vand A C V, we set §(z,4) =
minge 4 6(z, a).
Notice that with these definitions, if §(z,y) = 2
for some z,y € V, then there exists z € V such
that 6(x, z) = d(z,y) = 1.
We shall also use the notations

v = {zeVi:|[z, Vo] > j}

YV = {.T eVi: |[£II,V2]| <j}

Under these settings, we consider also

o= Z min{max{1, |[z,i*Vi]|}, |[z, V2]|}
eV

In this general framework, we have

Theorem 1 If max, ey 6(z,y) < 2 (i.e. the
contracted diameter of V is < 2), [S, 5] is
an edge cut in G such that Vo C S, and
k = mingey, degg(v) > |[S, S]|, then

1. 35€ 5:6(3,5) = 2.
.Vs€S:6(s,8) =1.
18N <[S,9] < k< |S|.
. SNV, Cc 9?vy, 8 D iV

G N e

L@ < IS, 8]l.

(See the examples in Figure 1.)
Proof.

1. Arguing by contradiction, suppose that
for any s € S: §(5,5) = 1. Let 5 € S.
Then we have k; edges ss;,1 < ¢ < Kk
with s; € S and (eventually) ks edges 555,
5; € S. But each 3, satisfies 6(5;,5) = 1,
thus we have ko new edges (here we used
that G is simple, because we assumed

that the vertices 5; are different) s;s,
with s € S, whence

I[S, S]| > k1 + ko = deg(3) > k

which contradicts our hypothesis.

. Let 5 € S be such that §(5,5) = 2.

Then for each s € S, as §(sg, s) = 2, there
exists § such that §(5p,5) = §(5',s) = 1.
But, again, as §(Sp, S) = 2, it follows that
5" € S, hence 6(s,S) = 1.

. By the previous point, we have for each

s € SNV; some edge in [S, S] incident in
s, and for some v € V5 we have also some
edge in [S, S] incident in v, thus
ISNVil+1<[S, S]]

On the other hand, if 5 € S satisfies
6(5,8) = 2 (such 3 exists by our first
point), then N(5) C S (recall that N(3)
is the neighbourhood of 3), whence

IS|>1+|N@GB)|>1+k

and our statement follows.

. Let s € SNV;. By our second point, and

using again that there is at least one edge
in [S, V3], we have

IN(s) VAl +[s, 8] < S, S]] -1
< degg(s) —1

and the first of our statements follows if
we notice that

degg(s) = [N(s) N Vi| + |[s, S]| + [[s, V2|

Now, S = V4 \ S N Vi, and our second
statement follows immediately.

. By our previous points, if s € SNV} then

I[s, 8] > max{1, [s,*V1]|}

and of course for 5 € 3, [[5, 5] > |[5, V2]l
thus

1S, S

IS NV, S]]+ 115, V2]l
> Z max{1, |[s,i?V1]|} +

sESNV;
> |5, V2]l
5€8
> @



Corollary 1 Assume that
1. degg(z) > k,z € V(G)
2. G4 is k-edge connected
8. maxgyey 6(z,y) <2
Then any of the following
1. 2>k
2. [0'Vi| >k
3. Vi =0W
implies that G is k-edge-connected.

(See the examples in Figure 2.)

Proof. Let [S,S] be any cut in G. We shall
show that, under the listed hypotheses and any
of the alternatives, |[S, S]| > k.

If SNV, # (0 and SN V; # 0, then, as

[SNVa, SNV, C[S, 8]

is a cut in Go, which we assumed to be k-edge
connected, we obtain |[S, S]| > k.

Without loss of generality, we assume in the se-
quel that Vo C S. We argue by contradiction
assuming that there exists some S such that
1S, S]| < k, so that we are under the hypothe-
sis of Theorem 1.

The first of our alternative hypothesis contra-
dicts the last of the conclusions of Theorem 1.

When z € 0'V;,
min{max{1, |[z,i*V1][}, [z, Vo][} > 1

so that we have |0'V;| < @ i.e. the second of
our alternative hypothesis implies the first one.
To finish our proof, notice that if V; = 9'V;, as
S C Vi, we have §(5,5) = 1 for any 5 € S, con-
tradicting the first of the conclusions in Theo-
rem 1.

3 FINAL REMARKS

Corollary 1 is related to a well known theorem
of Plesnik (see [2], Theorem 6), which states
that in a simple graph of diameter 2 the edge
connectivity is equal to the minimum degree.
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Figure 1: Conventions: 1.Filled polygons represent cliques, and curved arcs represent edges.
2.The dotted line separates G2 (the upper graph) from G (the lower graph). 3. The widest arc
shows the cut [S, S]. Descriptions: (a) Here |[S,S]|=3<k=4,|SNVi|=2,|5| =5, ® =3,
SNVi = 0?V;. (b) Here |[S,S]| =3 <k =4,|SNVi|=1,|5| =5, ® =3, SNV; # 8?V;. (c) Here
I[S,S]|=4<k=5,|SNV|=1,|8]=6,d=3, SNV, # 8*V;. (d) Here |[S,5]| =1 < k =2,
1SNV =0,[5]=3,&=1,5NV, =0°V; =0.



(a) (b)

Figure 2: Conventions: 1.Filled polygons represent cliques, and curved arcs represent edges.
2.The dotted line separates G2 (the upper graph) from G; (the lower graph). 3. The widest
arc shows a minimal cut [S,S]. Descriptions: (a) Here |[S,S]| = k = 4, ® = 4, |0'V;| = 3.
(b) Here |[S,9]| =k =3, ® =1, |0'V4] = 1, V; = 8'V4. This example shows that Corollary 1
includes an edge-connectivity version of the Expansion Lemma in [1], Lemma 4.2.3.



