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The general methodology used to construct Internet maps consists in merging all the discovered paths
obtained by sending data packets from a set of active computers to a set of destination hosts, obtaining a
graphlike representation of the network. This technique, sometimes referred to as Internet tomography, spurs
the issue concerning the statistical reliability of such empirical maps. We tackle this problem by modeling the
network sampling process on synthetic graphs and by using a mean-field approximation to obtain expressions
for the probability of edge and vertex detection in the sampled graph. This allows a general understanding of
the origin of possible sampling biases. In particular, we find a direct dependence of the map statistical accuracy
upon the topological propertigm particular, thebetweenness centralifyroperty of the underlying network.

In this framework, it appears that statistically heterogeneous network topologies are captured better than the
homogeneous ones during the mapping process. Finally, the analytical discussion is complemented with a
thorough numerical investigation of simulated mapping strategies in network models with varying topological
properties.
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I. INTRODUCTION mand sends probgslata packejstoward a certain Internet

In recent years a considerable research effort has bedpde(Internet provider addressproviding the addresses of
focused on the field of complex network&—3]. The main the traversed nodes. The merging of the discovered paths
reason for this effort finds its rationale in the very pervasiveallows the construction of a graphlike representation of the
presence of biological, social, or technological structures thaternet whose vertices are routers or ASs. By using tracer-
can be described using the paradigm of complex networkutelike mapping processes, a number of research groups
At a very abstract level, a network is a system composed dfave generated maps of the Interf@t10] that have been
many elementary agentaode$ cooperating via relations or used for the statistical characterization of the network prop-
interactions between therinks). The physical Internet is erties. The obtained maps show that the undireciease
one of the most common examples of complex networks irgraph representing the Internet ismall world an essential
the real society. Its growing structure is the result of com-property for the efficient functioning of an information net-
petitive and cooperative processes, in which individuawork. More strikingly, many studies have reported evidence
choice, optimization criteria, and policy-driven strategies cofor a heavy-tailed behavior of the Internet degree distribu-
operate with the lack of any centralized control in determin-tion: in particular, in[11], a power-law degree distribution
ing the self-organized evolution of the systp#b]. All these  P(k)~K™” with 2<y=<2.5 has been found. Several other
factors lead to the formation of a complex structure, whosestudies have collected data from Internet explorations, all
fabric and topology is largely unknown. In the absence ofconfirming a broad behavior of the degree distribution, at
accurate Internet maps many research groups have startbdth the router and AS levgll2-16. The evidence for a
large scale projects aimed at the collection of data on theery heterogeneous topology of the Internet, prompting the
topology and structure of this network of networlé-10. inadequacy of the standard paradigm of homogeneous net-
Investigations can be made at different granularity levelsvorks, has thus generated a large activity in the field of
such as the router and autonomous systa®) level, with  network modelind2,4,5,17,18
the final aim of obtaining an abstract representation, where Despite the flexibility of traceroute-driven strategies, the
the set of routers or ASs and their physical connections aregbtained maps are undoubtedly incomplete. In addition to
respectively, the vertices and edges of a graph. Researchdectors causing path distortion and other subtle technical
rely on a general strategy that consists in acquiring locaproblems[19], the relatively small number of sources from
views of the network from several vantage points and mergwhich the mapping projects are usually run allows combined
ing these views in order to get a presumably accurate globaliews missing a considerable fraction of edges and vertices
map. Local views are obtained by evaluating a certain numf16,20. In particular, the various spanning trees are espe-
ber of paths to different destinations by using specific toolsially missing those links that belong to transversal paths
(such as tracerout®r by the analysis of routing tabléthe  with respect to the shortest paths toward the tar@és so
so-called border gateway protod@GP] tables [5-10. calledlateral connectivity. Moreover, they sample more fre-

The importance of traceroutelike mapping processes reguently nodes and links that are closer to each source, intro-
sides in their simplicity and generality. The traceroute com-ducing spurious effects that might seriously compromise the
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statistical accuracy of the sampled graph. Theampling
biaseshave been explored in numerical experiments of syn-
thetic graphs generated by different algorithf@d—24. In

the case of a single source, it has been shown that apparent
degree distributions with heavy tails may be observed for the
sampled graph even if the underlying real graph is homoge-
neous (such as in the classic Erdés-Rényi graph mpdel
[21,22), or that the measure of the exponents of the degree
distribution can be biasef®2,23. These studies thus point
out that the evidence obtained from the analysis of the Inter-
net sampled graphs might be insufficient to draw conclusions
on the topology of the actual Internet network.

While traceroute probes take into account traffic loads, FIG. 1. Illustration of the traceroutelike procedure. Shortest
differences of bandwidth, policy strategies, failures, andpaths between the set of sources and the set of destination targets
other factors that can affect the actual path chosen by packre discoveredshown in full lineg while other edges are not found
ets, the simplest model of traceroute exploration amounts t@jashed lines Note that not all shortest paths are found since the
consider the collection of shortest paths for a source-targetinique shortest path” procedure is used.
pair. Indeed, shortest path routing can be considered as a first
approximation to the real probing path and the merging o
several of these views an approximation to the mapping pr

Targets

Sources

fabilities. A throughout numerical exploration of several net-
Sorks with different topological properties is provided in

ctesi.s.t.ln lt(rtns V‘llorl.( V‘)'e focust.on t?e t'ghttNreII?t'ond t;etwee ec. IV, stressing the agreement between analytical predic-
statistical (topologica) properties of a network and tracer- . -« -4 nimerical results.

outelike mapping strategies based upon shortest path routing,
with the purpose of understanding how the different topolo-
gies respond to the sampling process and what are their char- | \10DELING THE TRACEROUTE DISCOVERY
acteristic signatures in terms (_)f statistical quantities. We OF UNKNOWN NETWORKS
tackle the problem by performing a mean-field statistical
analysis and extensive numerical experiments of shortest As sketched in the Introduction, in a typical traceroute
path routed traceroutelike sampling in different networkstudy, a set of active sources deployed in the network runs
models. We find an approximate expression for the probabiltraceroute probes to a set of destination nodes. Each probe
ity of edges and vertices to be detected that exploits theollects information on all the nodes and edges visited along
dependence upon the number of sources and targets and tiie path connecting the source to the destination, allowing
topological propertiegsparseness, betweenneséthe net-  the discovery of the networkl9]. By merging the informa-
works. This expression allows the understanding, at a qualition collected on each path, it is possible to reconstruct a
tative level, of the efficiency of exploration methods by partial map of the networksee Fig. 1 While in the Internet
changing the number of probes imposed on the graph. Morenany factors, including commercial agreement and adminis-
over, the analytical study provides a general understanding dfative routing policies, contribute to determine the actual
which kind of topologies yields the most accurate samplingpath, it is clear that, to a first approximation, the route ob-
In particular, we show that the map accuracy depends on th@ined by traceroutelike probes is the shortest path between
underlying network betweenness distribution; the heavier théhe two nodes. This assumption, however, is not sufficient
tail, the higher the statistical accuracy of the sampled graphor a proper definition of a traceroute model in that equiva-
We substantiate our analytical finding with a thoroughlent shortest paths between two nodes may exist. In the pres-
analysis of maps obtained by varying the number of sourceence of a degeneracy of shortest paths we must therefore
target pairs on network models with different topological specify the traceroute model by providing a resolution algo-
properties. The results show that single source mapping praithm for the selection of shortest paths.
cesses face serious limitations in that also the targeting of the For the sake of simplicity, we can define three selection
whole network results in a very partial discovery of its con-mechanisms.
nectivity. On the contrary, the use of multiple sources (1) The unique shortest patySP probe. In this case the
promptly leads to a consistent increase in the accuracy of thehortest path route selected between two nadasd j is
obtained maps, where the statistical degree distributions a@ways the same independently of the sous@nd targefl
gualitatively discriminated even at low values of target den<{the path being initially chosen at random among all the
sity. A detailed discussion of the behavior of the degree disequivalent ones
tribution and other statistical quantities, as a function of the (2) The random shortest patfiRSP probe. The shortest
number of targets and sources, is provided for samplegath between any node pair is chosen randomly among the
graphs with different topologies, and compared with the in-set of equivalent shortest paths. This might mimic the effects

sight obtained by analytical means. of traffic congestion and administrative policies that can
The paper is structured as follows. In Sec. Il we discussnake independent the paths among pairs of nodes.
the theoretical model of traceroutelike processes. In Sec. lll, (3) The all shortest path6ASP) probe. This procedure

a mean-field statistical analysis of the model is developed, inliscovers all the equivalent shortest paths between source-
order to obtain analytical predictions of the discovery prob-destination pairs. This might happen in the case of probing
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repeated in timelong time exploratiopy so that equivalent Let us define the quantity, ™ that assumes the value 1 if

paths are discovered in different runs. the edge(i,j) belongs to the path selected by the traceroute
Actual traceroute probes contain a mixture of the threemodel between noddsandm, and O otherwise. For a given

mechanisms defined above, though we do not attempt to aget )={S, 7}, the characteristic function that indicates if a

count for all the subtleties that real studies encounter. Eacliven edge(i,j) is discovered and belongs to the sampled
traceroute model provides a test of the possible biases angtaph can then be written as

we will see that the different mechanisms have only little Ng
influence on the general picture emerging from our results.
On the other hand, it is intuitive to recognize that the USP =1-11 (1 E 4 2 Simiy ‘T(I m) (2)
model represents the worst case among the three different
methods, since it yields the minimum number of discoveriesThis function is simplyr; ;=1 if the edgel(i, j) belongs to at
In this perspective, even real mapping should provide veryeast one of the paths connecting the source-target pairs, and
likely a more optimistic scenario than those determined by0 otherwise. The average over all possible realizations of the
the USP case. For this reason, if not otherwise specified, weet()={S,7} gives us the statistical counterpart of the char-
will report the USP data to illustrate the general features ohcteristic function, that is, the discovery probability. In the
our synthetic exploration. following, we will make use of an uncorrelation assumption
More formally, the experimental setup for our simulatedthat allows an explicit approximation for the discovery prob-
traceroute mapping is the following. L&B=(V,E) be a ability. Neglecting correlations between the paths generated
sparse undirected graph wilth nodes; we define the sets of by different source-target pairs, the discovery probability is
verticesS={iy,i,, ... ,iNS} and 7={j1,j2, .- ,jNT} specifying  thus obtained by considering the edge in an average effective
the random placement dfs sources andN; destination tar- medium of sources and targets homogeneously distributed in
gets. For each ensemble of source-target fair4S,7}, we  the network. In this approximation, the average of the prod-
compute the path connecting each source-target pair accordet can be replaced by the product of the averages, and re-
ing to the USP method. The sampled gragph(V',E") is  calling that each nodehas, on average, a probability to be a
defined as the set of vertic®$ (with N = source or a target proportional to their respective densities,

I#m

induced by considering the union of all the paths connecting Ny

the source-target pairs. The sampled graph is thus analogous N5, )= pr and s = ps, (3)
to the maps obtained from real traceroute sampling of the a Hs

Internet.

In our study the parameters of interest are the density theaverage discovery probability of an edge

=N¢/N and ps=Ng/N of targets and sources. In general,

traceroute-driven studies run from a relatively small number (mpy=1-\ Tl |1- 2 8 E S ()'l m)

of sources to a much larger set of destinations. For this rea- I#m !

son, in many cases it is appropriate to work withinstead _ am

of the corresponding density. On the contrary, the density of =1-]la ~prpoi ) (4)

- I+
targetspr allows us to compare mapping processes on net- "

works with different sizes by defining an intrinsic percentageThis expression simply states that each possible source-target
of targeted vertices. In many cases, as we will see in the nextair is weighted in the average with the product of the prob-
sections, an appropriate quantity representing the level ddbility that the end nodes are a source and a target. The

sampling of the networks is realization average (J(foi(fjfm)> is very simple in the uncorre-
NN lated picture, depending only on the kind of probing model.
= STT (1)  Inthe case of the ASP method, all shortest paths are discov-

ered, so tha(o ) is just 1 if (i,j) belongs to one of the

that measures the density of probes imposed on the systeshortest paths betwedzrand m, and 0 otherwise. In the case
In real situations it represents the density of tracerout®f the USP and the RSP, the situation is slightly different
probes in the network and therefore a measure of the loagince only one of the possibly multiple shortest paths be-
provided to the network by the measuring infrastructure.  tweenl andm s discovered. If we denote by"™ the num-

In the following, our aim is to evaluate to what extent theber of shortest paths between vertidesand m, and by
statistical properties of the sampled graphdepend on the x i ™ the number of these paths going throughj), it is then
parameters of our experimental setup and are representatigtear that the probability that the traceroute model chooses
of the properties of the underlying gragh a path going through the edge,j) betweenl and m

is <0'(| My=xhm glhm,
1)
The standard situation we consider is the one in which

IIl. MEAN-FIELD THEORY OF THE DISCOVERY BIAS prps<1 and SlnCG(O'-(I-m)>$ 1, we have

By means of the following mean-field statistical analysis (. tm
of the simulated traceroute mapping, we provide a statistical ll; (1 - prpda;, m>) = E exp= prps(oi™), ()
estimate for the probability of edge and node detection as a "
function of Ng, Nt and the topology of the underlying graph. which inserted in Eq(4) yields
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(mpy=1- [T [exp= prpg ™)) ] = 1 - exd- prpdy) belonging to the set of sources or targets are discovered with
1 I ’

£m ! probability 1. The second term on the right hand side, there-

6) fore, expresses that the vertesloes not belong to the set of

sources and targets and is not discovered by any selected
Wherebij:2|¢m<0'i(’ljm)>- In the case of the USP and RSP, thepath between source-target pairs. By using the same mean-
quantity b;; is by definition the edge betweenness centralityfield approximation as previously, the average vertex discov-
E#mxi("j'm)/a("m) [25,26, sometimes also refereed to as the Y Probability reads as

“load” [27] (in the case of ASP, it is a closely related quan- (m)y=1-(1-ps—pp) 11 @-prpga™™). (10
tity). The betweenness, a classical nonlocal measure of the | £m£i !

centrality of an edge or vertex in the graph, can be seen, in ) .
this context, as a measure of the traffic load that goe s for the case of the edge discovery probability, the average

through an edge or vertex, if the shortest path is used aeonsiders all possible source-target pairs weighted with prob-
- i ’ : : abilit In the ASP model, the average'"™) is 1 if i
defining the optimal path between pairs of vertices. Y p1ps: ' [
The edge betweenness assumes values between 2 dprlongs to one of the shortest paths betweandm, a(Td)O
N(N-1) and the discovery probability of the edge will there- otherwise. For the USP and RSP modelés;"™)
fore depend strongly on its betweenness. In particular, fonrxi("m)/a“'m) wherex"™ is the number of shortest paths be-

vertices with minimum betweennebg=2 we have tweenl andm going through. If prps<<1, by using the same
approximations used to obtain E@), we obtain
() = 2p1ps, (7)
(m) =1-(1-ps= pr)exp- prpby), (1)

which recovers the probability that the two end vertices of
the edge are chosen as source and target. This implies thatyhere bi:zhﬁm#i(gi("m))_ For the USP and RSP casds,

the densities of sources and targets are small but finite in thes, (M ,0m s the vertex betweenness centrality
limit of very large N, all the edges in the underlying graph \yhich ‘is limited in the interval0,N(N-1)] [25-27. For
have an appreciable probability to be discovered. Moreovefsiance, the leaves of the graph are dangling ends discov-
for a large majority of edges with high betweenness, the,oq only if they are either a source or a target themselves;
discovery probability approaches 1 and we can reasonablt\hey have betweenness valbg=0 and, indeed, we recover
expect to have a fair sampling of the network. (m)=pe+pr.

f In tmc_)tst ;galls\t/lvch'_slar.r:pl|ngs, howbelvetr, we f"’?"e a Ve“{ld'f' As discussed before, the most usual setup corresponds to
erent situation. While it is reasonable to consigera sma a densityps~O(N3) and in the largeN limit we can con-

but finite value, the number of sources is not extengNeg veniently write
~0O(1)] and their density tends to zero BS'. In this case it y
is more convenient to express the edge discovery probability (m)=1-(1-ppexp- EH) (12)
as
. where we have neglected terms of or@¥N™) and the res-
(m ;) =1-ex- b)), (8)  caled betweenness=N"tb; is now defined in the interval
m[O,N—l]. This expression points out that the probability of
vertex discovery is favored by the use of a finite density of
targets that defines its lower bound.
We can also provide a simple approximation for the ef-

wheree=prNsis the density of probes imposed to the syste

and the rescaled betweennévq‘,jsN‘lbij is now limited in
the interval[2N™%,N-1]. In the limit of large networkgN

—o) it is _(ilear that edges with low betweenness havegtive average degre@) of the nodei discovered by our
{m;;)~O(N™), for any finite value ofe. This readily tells Us <, 1ing process. Each edge departing from the vertex will

that in real situations the discovery process is generally no{ontribute proportionally to its discovery probability, yield-
complete, a large part of low betweenness edges being ngf

discovered, and that the network sampling is made progres-

sively more accurate by increasing the density of prabes (k)= [1-expg- GEJ.)] = EEE, (13)
A similar analysis can be performed for the discovery j i

probability(;) of a vertexi. For each source-target detwe

have that The final expression is obtained for edges V\EE” <l.1In
this case, the sum over all neighbors of the edge betweenness

Ns NT is simply related to the vertex betweenness3al; =2(b;

m=1-{1-24, - Z B, +N-1), where the factor 2 considers that each vertex path
st =1 traverses two edges and the teNm1 accounts for all the
Ns  Nr | edge paths for which the vertex is an end point. This finally
x I (1-2 8,2 onioi™ |- (9 yields
I#m#i s=1 t=1

(Im) _

whereo; "7 =1 if the vertexi belongs to the path selected by (k) = 2+ 2eby. (14)
the traceroute model between nodeand m, and O other- The present analysis shows that the measured quantities
wise. In this formula, it has been considered that verticesand statistical properties of the sampled graph strongly de-
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pend on the parameters of the experimental setup and the TABLE I. Main characteristics of the graphs used in the numeri-
topology of the underlying graph. The latter dependence igal exploration.

exploited by the key role played by edge and vertex be
tweenness in the expressions characterizing the graph dis- ER ER WS BA DMS
covery. The bgtweenness is a nonlocal topolo_glcal quantity 100 100 100 10° 100
whose properties change considerably depending on the kind

of graph considered. This allows an intuitive understanding |E|

10° 5X10° 10° 4% 10¢ 2x 104

of the fact that graphs with diverse topological properties k 20 100 20 8 4
deliver different answer to sampling experiments. C 0.002 0.01 0.52 0.006 0.74
Kinax 40 140 26 334 346

IV. NUMERICAL EXPLORATION OF GRAPHS

Let us consider a sparse undirected graph, denote@ by ., nonents. Another homogeneous graph can be obtained

=(V,E). We will consider two main classest) homoge- it the construction algorithm proposed by Watts and Stro-
neous andii) heterogeneous graphs. Graphs are considereghy; for small-world network§29]: starting from a regular
to behomogeneou# the degree distributioP(k) is peaked  panyork (e.g., a one-dimensional lattice with connections to

around _its average \{aIUe This average is then meaningful {hek nearest neighbors along the chaieach link is rewired
and typical of any given vertex. On the contraigteroge- \yith a certain probability. The resulting degree distribution
neousgraphs _dlsplay degree values ranging over various Ofhas g shape similar to the case of Erdés-Rényi graphs,
ders of magnitude, and the average value is not representgaaked around its average value. The clustering coefficient,
tive or typical (for example, the maximum value of the powever, is large if the rewiring probabilitg<1, making
degreeknay is much larger thark). As a prototype of het- this network a typical example of a clustered homogeneous
erogeneous graphs, we consider the classsadle-free  network. As for the ER case, it is possible to obtain graphs
graphs for which P(k) has a heavy tail decaying as a power consisting of more than one connected component; in this
law P(k)~k™”; such graphs are very heterogeneous, withcase we use the largest of these components.

large fluctuations of the degree, characterized by a variance \we have used networks wit=10* nodes k=20 unless

of the degree distribution diverging with the size of the net-gtherwise specified; for the WS modpk0.1 has been taken

work. (see Table)l Each measurement is averaged over ten real-
Another important characteristic discriminating the topol-jzations. For both models, and similarly to the degree distri-

ogy of graphs is the clustering coefficiegitwhich, giving  pution, the vertex and edge betweenness distributions are

the fraction of connected neighbors of a given nodeea- eaked around their average valiesind b, respectively.

sures t.he Ioc_al coheswenes.s of nod.es..Thg average cluster@ge node betweenness cumulative distribution is reported in
coefficientC=(1/N)Z;c; provides an indication of the global Fig. 2, confirming the narrowness of the values interval

level of cohesiveness of the graph. This number is generall d the ch L | ith imal val h
very small in random graphs that lack correlations. In man}/\roun the characteristic va bewith maxima vaues muc
aller thanN, and increasing only slowly witiN. Since a

real graphs, however, the clustering coefficient appears to L . .
grap g PP rge majority of vertices and edges will have a betweenness

very high and opportune models have been formulated t I h | d(12
represent this property, for both homogeneous and heterogi€"y ¢lose to the average value, we can use Bjsand(12)

neous graphs. In the following sections we will make use of© estimate the order of magnitude of probes that allows a
those models that can be considered typical examples of the
various classes. The numerical procedure is in all cases the
following: (i) we consider a graph with given topological

10°F

properties;(ii)) we choose at randomNg vertices as sources w0 E
andN; vertices as targetsiii ) we compute the shortest paths ,

between sources and targets; the properties of the graph wE 3
obtained by the merging of the shortest paths are analyzed &

\’1ng

and compared to those of the original graph, in particular to &
test the predictions of the mean-field analysis.

A. Sampling homogeneous graphs 6:

10°F E
Our first set of simulations considers underlying graphs f
with homogeneous connectivity; namely, the Erdds-Rényi 1o bkl
(ER) and the Watts-Stroga{@VS) models. 10 5

The classical Erdos-Rényi mod&8] is a typical example
of a homogeneous graph, with degree distribution following FIG. 2. Cumulative distribution of the average node between-
a Poisson law, and very small clustering coeffici@itorder  nessb in the ER and WS graph models. The ingetlinear-linear
1/N). Since an ER graph can consist of more than one conscale shows the behavior of the average node betweenness as a
nected component, we consider only the largest of thestinction of the degreé.
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107, FIG. 4. Cumulative degree distribution of the sampled ER graph

E
S+

with k=20 and 100, for USP probes. The figure shows sampled
distributions obtained witlp+=0.1 and varying number of sources
Ns The solid lines are the degree distributions of the underlying
graphs. In the inset we report the peculiar cse1 which pro-
Wides an apparent power-law behavior with exponent -1 at all val-
ues ofpy. The inset is in linear-log scale to show the logarithmic
behavior of the corresponding cumulative distribution.

FIG. 3. Frequency\I;/Nk of detecting a vertex of degrde(top
left) and proportion of discovered edgég)/k (bottom lef) as a
function of the degree in WS graphs. The figures on the right sho
the frequenC)N;/Nb of detecting a vertex of betweenndsand the
effective average degré&’) as a function of the betweenness cen-
trality, in order to provide a direct comparison with the predictions
of Egs.(12) and(14). The exploration setup consideg=2 and )
increasing probing levet obtained by progressively higher density 9raph, as analytically shown by Clauset and Mop2e].
of targetspr. However, strong deviations from this power law appear as
soon asNg=2, and the obtained distributions are far from a
fair sampling of the graph. Indeed, bath; ;) and () tend true heavy-tail dIStI’!bu.tIOI’]. at any appreciable level of prob-
' ing. Indeed, the distribution runs generally over a small

range of degrees, with a cutoff that sets in at the average

AL lower value ofe, obtaned by varyingr and N, the iRt TR I SO0 R R e v
underlying graph is only partially discovered. We first study ange, 9 grap y larg

the behavior of the fractioh;/N, of discovered vertices of €rage degre& must be considered; however, other distinc-
degreex, Ny being the total number of vertices of degieim  tiV€ Spurious effects appear in this case as sodNsas2. In
the underlying graph, and the fraction of discovered edgeBarticular, since the best sampling occurs around the high
(K')/K in vertices of degrek. In Fig. 3 we report the behay- degree values, the distributions develop peaks that show in
ior of these quantities as a functionlofor the WS modela  the cumulative distribution as plateatsee Fig. 4 The very
similar behavior is obtained for ER graph&he fraction Same behavior is obtained in the case of the WS model.

N;/Nk naturally increases by augmenting the density of tar-F'na"y' in the case Of_ RSP _an(_j ASP fraceroute models, we
gets and sources, and it is slightly increasing for larger deobserve that the obtained distributions are closer to the real

to 1if e> ma{g‘l,ﬁl]. In this limit all edges and vertices
will have probability to be discovered very close to 1.

grees. The latter behavior can be easily understood by noti@"é since they "."HOW a larger numbe_r of discoveries.

ing that vertices with larger degree have on average a larger ONY the particular caseof Ng=1 yields for the sampled
betweennesb(k) (see inset of Fig. 2 By using Eq.(12) we istribution an apparent scale-free behavior with slope -1
have thai;./ Ny~ 1 —exi—eb(K)], obtaining the observed in- (for all target den5|t|espT_[22]). The distribution cutoff is
crease at largk. On the other hand, the range of variation of then consistently determined by the average degreghe
degree and betweenness in homogeneous graphs is very nBfésent analysis shows that, in order to obtain a sampled
row and only a large level of probing may guarantee Verygrap.h with apparent scale—free_ behavior on a degree range
large discovery probabilities. Similarly the behavior of the Varying overn orders of magnitude, we would need very
effective discovered degree can be understood by looking d&eculiar sampling of a homogeneous underlying graph with
Eq. (14) stating thatk')/k= ek [1+b(k)]. Indeed the initial an average degrée=10"; a rather unrealistic situation in the
decrease ofk’)/K is finally compensated by the increase of Internet and many other information systems where2.

b(k).

A very important quantity in the study of the statistical . ) )
accuracy of the sampled graph is the degree distribution. In In this section, we extend the analysis made for homoge-
Fig. 4 we show the cumulative degree distributiBa(k’ neous graphs to the case of highly heterogeneous graphs. As
>k) of the sampled graph defined by the ER model for in-
creasing number of sources. The sampled distributions arelit js worth noting that the experimental setup with a single source
only approximating the genuine distribution. In particular, is a limit case corresponding to a highly asymmetric probing pro-
for Ns=1, a power law is obtaine@nset of Fig. 4, in strik-  cess; it is therefore badly, if at all, captured by our statistical analy-
ing contrast with the genuine degree distribution of the reakis which assumes homogeneous deployment.

B. Sampling heterogeneous graphs
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typical examples, we consider the Barabasi-All§BA) and
the Dorogovtsev, Mendes, and SamukRBPMS) models,
which are both scale-free graph models.

The prototype of a scale-free graph is the original grow- ,: ’ f@’ e foa o Tmamm,
ing network model by Albert and Barab48i0]. The prefer- 2 .| & o e=0l| Z u?t oezbdl wte, a
ential attachment mechanidi@ach new node is connected to o = e=1 1™ Jgleesz ]
already existing nodes chosen with a probability proportional 10 1 o100 20 30 40 50
to their degregyields a connected graph with a power-law 10 ' ' 200 '
degree distribution and small clustering coefficient. Another ¢ 150 iy 2
growing model has been introduced by Dorogovtsev, ~ N ‘=l Lentet o

Mendes, and Samukh[i81]: at each time step, a new node is ._:w.,_
introduced and connected the two extremities of a ran- v
domly chosen edgé¢hus forming a triangle. A given node is

thus in fact chosen with a probability proportional to its de-
gree, which corresponds to the preferential attachment rule.

The resulting graphs have a large clustering coefficient

(=0.74 along with a power-law degree dlstrEutlon. left) and proportion of discovered edgég)/k (bottom lefy as a
We have used networks of si2é= 10" with k=8 for the  function of the degree in the BA model. The figures on the right
BA and k=4 for the DMS model, and averaged each meashow the frequenciN,/N,, of detecting a vertex of betweenndss
surement over ten realizatiorisee Table )l Both models ~and the effective average degr@e) as a function of the between-
have a scale-free distributidP(k) ~ k™ with y=3. Since the ness centrality, in order to provide a direct comparison with the

degree distribution is heavy tailed with fluctuations divergingPredictions of Eqs(12) and (14). The exploration setup considers
. . . . — Ns=2 and increasing probing leved obtained by progressively
logarithmically with the graph size, the average degkee higher density of targets.

though well defined, is not a typical value in the network and
there is an appreciable probability of finding vertices with
very high degree. Analogously, the betweenness distributio
is heavy tailed 27,32, allowing for an appreciable fraction

of vertices and edges with very high betweenness. In partic
lar it is possible to show that in scale-free graphs the sit

; . 5
between_ness is related to the _vertlces degreb(labv_k ’ graphs have a small average degree, the observed degree
where is an exponent depending on the mof&]. Since jsgribution spans more than two orders of magnitude. The

in a heavy-tailed distribution the allowed degree is varyingyisyrihytion tail is fairly reproduced even at rather small val-
over several orders of magnitude, the same will occur for the

betweenness values. In such a situation, even in the case of

0 500 1000 1500

FIG. 5. Frequency\li/Nk of detecting a vertex of degrde(top

degree values. This is indeed what we observe in humerical
preriments on BA and DMS graphs. In Fig. 6 we report the
degree distribution obtained for the DMS model. Similar
blots are obtained in the case of the BA model with the same
evel of probing. Although both underlying DMS and BA

small ¢, vertices whose betweenness is large endingk) e 0 '“\;\ ' E
>1] have (m)=1. Therefore, all vertices with degrde 10"t By, :: 27:%5 E
> eV will be detected with probability 1. This is clearly g ,f aen pr=08 |
visible in Fig. 5, where the discovery probabililﬁ(/Nk of N E
vertices with degre& saturates to 1 for large degree values. n 10°¢ 3
Consistently, the degree value at which the curve saturates .t DMS ]
decreases with increasirg A similar effect is appearing in 0 E
the measurements concernitig)/k. After an initial decay 10

(see Fig. bthe effective discovered degree is increasing with 102

the degree of the vertices. This qualitative feature is captured S

by Eq.(14) which gives(k')/k=ek[1+b(k)]. After an ini- 10

tial decay the ternk *b(k) ~ kA~ takes over and the effective & 1?t

discovered degree approaches the real ddgreigure 5 also &S Lf

displays the frequencylz,/Nb and the discovered degree of 10°%

vertices with betweenneds showing in a more direct way 10k

the qualitative agreement with the analytical predictions of C

Egs.(12) and(14). It is worth stressing that the results ob- 10 k

tained for the DMS model show the very same behavior as

those obtained in the case of the BA model. FIG. 6. Cumulative degree distribution of the sampled DMS

It is evident from the previous discussions that, in scaleyraph for USP probes. The top figure shows sampled distributions
free graphs, vertices with high degree are efficiently sampledptained withiNg=2 and varying density target. The figure on the
with an effective measured degree that is rather close to thgottom shows sampled distributions obtained wjtf=0.1 and
real one. This means that the degree distribution tail is fairlwarying number of sourcels The solid line is the degree distri-
well sampled while deviations should be expected at lowebution of the underlying graph.
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ues ofe. The data show clearly that the low degree regime igpresence of spurious power-law behavior. On the contrary,
instead undersampled, resulting in a bending of the curves grower-law tails are easily sampled with enough accuracy for
an apparent change in the exponent of the degree distribthe large degree part at all probing levels. As a natural con-
tion, as already noticed by Petermann and De Los Rios in theequence, the heavy-tail behavior observed in real mapping
case of single source mapping procedy2s. experiments should be, very plausibly, a genuine feature of
According to the present analysis, graphs with heavythe Internet. On the other hand, it is very important to stress
tailed degree distribution allow a better qualitative representhat, at the quantitative level, some properties, such as aver-
tation of their statistical features in sampling experimentsage degree, distribution exponent and clustering, might ex-
Indeed, the most important properties of these graphs ateibit considerable deviations from their true values. In addi-
related to the heavy-tail part of the statistical distributionstion, degree correlation properties have been found in
that are indeed well discriminated by the traceroutelike exdnternet maps that exhibit a disassortative cahrd@8y34.
ploration. This implies that large degree vertices tend to be connected
to small degree ones, and vice versa for small degrees verti-
ces; it would also be interesting to understand how such
V. CONCLUSIONS AND OUTLOOK properties may affect the sampling. The models we used do

The presented statistical mean-field analysis of explorafot show any particular correlation structure and a prelimi-
tion techniques based on shortest-path routing provides @ary numerical analysis does not appear to introduce spuri-
general interpretative framework for the results obtained irPUs correlation effects in the sampled graph. Further tests on
numerical experiments on graph models. The sampled graptPecific models with stronger correlations are beyond the
clearly distinguishes the two situations defined by homogescope of this paper but might provide interesting results in
neous and heterogeneous topologies, respectively. This @Hr understanding of the mapping process. In these respects,
due to the exploration process which statistically focuses off is of major importance to define strategies in order to op-
high betweenness nodes, thus providing a very accurate safiize the accuracy of the various parameters and quantities
pling of distribution tails. Therefore, the main topological ©f the underlying graph.
features of heavy-tailed networks are more easily discrimi- In conclusion, in this paper we have proposed a statistical
nated, being the relevant statistical information primarilytheory of the shortest-path probing of large information net-
contained in the fairly well-captured degree distribution tail. Works such as the Internet. We unveil, by means of a simple
The sampling of homogeneous graphs appears more cumbénean-field approximation_, the relations between the statisti-
some, but surprising effects such as the existence of appareftl observables of the discovered graph and general topo-
power laws are found only in very peculiar cases. Accordingogical properties of the unknown underlying netwgskich
to our theoretical approach, multisource exploration proceas the betweenness centralitit is worth remarking that the
dures generally provide sampled distributions with enougtProperty of centrality plays an important role in many dy-
signatures to distinguish at the statistical level betweeMamical processes occurring on networks, such as, e.g., epi-
graphs with different topologies. demic spreat_jmg where the most _central nodes are cruqlal in

This evidence might be relevant in the discussion of reathe propagation pattern. The relation between our capacity of
data from Internet mapping projects. Up to now availablemeasuring the structure of networks and the biases intro-
data indicate the presence of heavy-tailed degree distribifluced by the vertices centrality may therefore be interesting
tions at both the router and AS levels. The upper degre@ﬁ the forecast of computer virus epidemics and other digital
cutoff at the router and AS level runs up to21and 16, attacks. Finally, we stress that the quantitative optimization
respectively. Then, in the light of the present discussion, it i®f 1arge network sampling is a more difficult and technical
very unlikely that this feature is just an artifact of the map_problem that calls for further detailed work aimed at a more
ping strategies. Indeed, a homogeneous graph should have Bfecise assessment of the mapping strategies on both the ana-
average degree comparable to the measured cutoff; thl¥tic and numerical sides.
means that_ for the Internet to be a homogeneous graph it ACKNOWLEDGMENTS
would require that nine routers out of ten would have more
than 100 links to other routers, something quite unrealistic. This work has been partially supported by the European
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