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What is a community?

Set of nodes which share something:
Persons with a similar interest (family members, friends)
Web pages with a similar content
Proteins with a similar function
Blogs on a same topic, etc.

Relation with the structure of the network?
Dense connections within communities
Sparse connections between them
-> Modularity
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Dynamic networks

Most networks are evolving:
New pages/sites appear on the web
People begin new relationships
Posts are created on blogs, etc.

Classical approaches for communities dynamic networks:
Forget the evolution
Build a temporal network
Compute communities (independently) at each time step
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Evolving communities

Problems with computing communities at each time step:
Stability
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Evolving communities

Problems with computing communities at each time step:

Stability
Tracking communities fromt to t+1
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Dealing with stability

Basic idea [Song et al. SIGKDD 2007]:

Do not compute communities independently
Quality(t+1) = f(static quality(t+1), evolution quality (t->t+1))
Communities at time t+1 are constrained by communities at time t

Extending this idea consists in removing all instabilities:
We search ONE partition good in average
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Global modularity - definition

Classical modularity: quality of a partition

Global modularity: sum of instantaneous/classical modularities
G; = (V;, E;) network at time |

t=T
leabaf (ﬂ-aG — (GlaGQa aGT)) — Z Q(Gt?ﬂ-‘%)
t=1
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Global modularity - computation

Louvain algorithm alternates two phases:
Nodes are moved one by one using the modularity gain maximization
Communities are grouped into a graph between communities

Gain maximization Is easy to compute => fast algorithm

The same scheme can be applied to global modularity:
Gain: sum of gain of modularity at each time step
Grouping: each static graph is grouped independently
Can be done more efficiently than the naive parallel implementation
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Global modularity - validation

We use a simple dataset and show that:
The partition is good (high modularity) at each time step
The partition obtained on the dataset is plausible

Dataset used in this talk:
Multicast routers neighbordhood topology (dataset from Pansiot et al.)
Everyday, the connected component of a given router is acquired
Measured on a daily basis during several years (low evolution)

Other datasets have been used:
blogs, other Internet topologies, etc.
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Comparing partitions

We compare:
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Nodes life inside communities




Nodes life inside communities




Community evolution

The partition does not evolve but the communities do.
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Window size

Do we really want to optimize over the whole period?
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Conclusions and future work

Conclusion:
A simple approach for community detection
Allows to study the dynamic structure of a network
Can (must) be optimized on smaller time windows

Future work:
Analyze other datasets (with more dynamics)
Causality
t=T
leobaf (ﬂ-a G — (Gla GZa <oy GT)) — Z Q(Gfﬂ ﬂ-“/z)
=1
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Thanks for your attention

www.complexnetworks.fr
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