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1

Overview

The subject of this dissertation are complex systems, which are systems formed by

multiple elements interacting between them. From these interactions, an organized col-

lective behavior emerges. The size of these systems makes it almost impossible to study

their evolution on the microscopical level, so that typical methodologies in Complex

Systems are essentially different from those in other fields of science.

Model building is of major importance in Complex Systems. Models are built in

order to reproduce macroscopic behavior of these systems and then infer what happens

in a small scale from a statistical point of view, or how the macroscopic behavior will

evolve if the system growths.

System simulation is the execution of a model in order to reproduce the system’s

behavior. Throughout a simulation, interaction rules are applied between the variables

defined in the model. In order for the model to be useful, and considering that these

systems are formed by a great number of components, it is important for the rules to be

as simple as possible, and to scale efficiently with the size of the system. Thus, a good

model should find a trade-off between refinement, precision of its results and scalability.

The variety of existing models in this field is due to the inability for a single model

to capture the full behavior of the system. In this dissertation we study combinatorial

models of complex systems, in which the representation of the system is a network,

which we call complex network. In general terms, networks are formed by nodes and

edges connecting them. They are mathematically described by graphs.

Our contribution here is to develop methods and algorithms for combinatorial models,

in order to study and characterize some properties of complex systems.

This dissertation is organized as follows:

• In Chapter 1 we introduce the Complex Systems field and some of its historical

milestones. We offer some examples of complex systems and we introduce the

modeling problem.

• Chapter 2 explores the state of the art in combinatorial modeling. We mainly focus

in those results or research lines which are most related with our contributions and

serve as precedent for this work. This chapter also introduces most of the notation

used throughout the entire work.

• In Chapter 3 we deal with a property which is mainly found in networks with

a human component, like social networks: community structure. We develop a

methodology for obtaining communities in large-scale networks. We describe the

method by using a formal framework in which we also offer microscopical arguments
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for its correct behavior. By means of comparison metrics and visualization tools,

we show the obtained results in both real networks and benchmarks. We also focus

on the computational complexity and show that our method scales efficiently with

the size of the networks.

• In Chapter 4 we study the Internet as an information flow network and we con-

tribute with a method that provides lower bounds for network connectivity in

linear time. Studying Internet connectivity is quite relevant because it allows ser-

vice providers to improve the quality of service and increase fault tolerance. Our

algorithm is able to identify weak points in the network, for example.

• Finally, in Chapter 5 we develop a visualization tool for studying the clustering

phenomenon in complex networks. We analyze several hierarchical and modular

networks. We use different types of clustering models on them and, by means

of visualization, we show that one of the models better reproduces the original

networks, and that it is possible to distinguish the models at a glance.



Chapter 1

Introduction

“It is merely suggested that some scientists will seek and develop for

themselves new kinds of collaborative arrangements; that these groups will

have members drawn from essentially all fields of science; and that these

new ways of working, effectively instrumented by huge computers, will

contribute greatly to the advance which the next half century will surely

achieve in handling the complex, but essentially organic, problems of the

biological and social sciences.”

Warren Weaver, “Science and Complexity”, 1948 [155]

“Complexity is the property of a real world system that is manifest in the

inability of any one formalism being adequate to capture all its properties.”

Donald Mikulecky, 2001 [108]

Some phenomena like the Earth’s motion around the Sun, or the collision between

two billiard balls, can be correctly modeled by the laws of Classical Mechanics. On the

contrary, the evolution of gas particles inside a container is unsolvable in practice, even

though obeying the same physical laws. Statistical Physics offers appropriate tools to

deduce (departing from the same Classical Mechanics laws) the macroscopical properties

of the system in the equilibrium state.

Generalizing this method for studying confined gases towards analyzing people be-

havior in a society does not seem feasible. We lack of fundamental physical laws, and

human behavior might be judged as unpredictable and complex. Nonetheless, in many

situations it is clear that an organized macroscopical behavior does take place. This

happens, for example, when mass demonstrations occur, when a new fashion arises, or

when a rumor spreads. We do not pretend to deduce these facts from elemental laws,

but to understand them as a consequence of interactions between individuals.

3
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This initial digression will allow us to understand the classification proposed in 1948

by mathematician Warren Weaven, pioneer in foreseeing the study of Complex Systems

as an interdisciplinary field. Weaver classified scientific problems into those of disorga-

nized complexity and those of organized complexity, in terms of the difficulty for

dealing with them and arriving at their solution [155].

Problems of disorganized complexity are those in which the laws regulating the inter-

actions among the variables are known to us, but the number of variables is quite large,

and usually even the initial state or input for the problem is not fully known. If we are

allowed to consider this initial state as random, then we can use statistical methods in

order to predict some global macroscopical properties of the system as a whole. Weaver

also points out that this approach is not restricted to Physics, but can also be applied in

problems of economic or social interest. The Erlang formulae1 for resource dimensioning

and Actuarial Calculus are also a consequence of this perspective.

In organized complexity problems there is also a great number of variables. These

variables are interrelated in a rather complicated fashion, but in no way random. Con-

sider for example people’s behavior in an organization, or the way in which an indivi-

dual’s genetic constitution becomes expressed in his characteristic features. We are as

yet far from fully knowing the laws ruling these problems. Nonetheless we perceive an

interaction among the variables, which results in an organic whole.

In contrast to this we find the problems of simplicity, in which the number of

variables is small, and the way in which these variables interact is fully known. These

problems occupied the 18th, 19th and 20th century Physics, leading to great technological

innovations which brought the Industrial Revolution, and the Information Age more

recently.

Lastly, and so as to complete this outline, there exists a last group of problems in

which the governing laws are fully known, but the system’s sensitivity to initial conditions

makes it almost impossible to predict its evolution. These ones are known as chaotic

systems. In them, small variations in the input may cause big fluctuations in the output.

Forecast models and stock markets are some examples of these systems.

The following diagram resumes the classification:

1See “Teletraffic Engineering and Network Planning”, V.B. Iversen, 2010, pages 108 and 232.
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TYPE ESSENTIAL CHARACTERISTICS EXAMPLES

Simplicity
- Small number of variables

- Known interaction laws

- The principles of internal

combustion engine (directly

from macroscopical variables)

- Antenna radiation

Disorganized

complexity

- Large number of variables

- Known interaction laws

- Macroscopic description

- Randomness

- Mathematical models of population

- Radioactive decay models

Organized

complexity

- Large number of variables

- Interaction rules exist,

but are not formalized

- Organic description

- Study of genetical factors

in disease

- Study of human relations

and social group formation

Chaos

- Known interaction laws

- Instability

- Difficulty for prediction

- Turbulent fluids

- Climatology

Table 1.1: W. Weaver’s classification of scientific problems (1948) [155].

This thesis deals with complex systems, which belong to the organized complexity

group inside this classification. This first chapter has two major parts: in the first one

we present complex systems by mentioning some of their properties and some examples,

and then we give a definition. We also provide a brief review on the historical evolution of

their study. In the second part of the chapter we introduce the modeling and simulation

problem.

1.1 Introduction to Complex Systems

Before sketching a definition of what a complex system is, we shall introduce two fun-

damental notions related to them, and around which there is a great consensus in the

scientific community:

Complex systems are emergent. They are formed by a large number of elements

interacting among them. These interactions are relatively simple in their composition.

Nonetheless and due to the multiplicity of individual relationships, the system as an

organic whole presents some characteristics which have emerged, as they were not present

in any of the individual elements. The arousal of this original and coherent structure or

pattern is called emergence.

Complex systems are self-organized. On a large scale, they present an ordered

structure which, again, is the result of many individual interactions. This organization
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is not controlled by either an external nor an internal agent, but is rather spontaneous and

decentralized. This makes the system robust and fault-tolerant. A practical example of

this phenomenon in a social context is the so-called “collective behavior” of social groups.

In many cases, this self-organization implies the existence of a hierarchical structure.

On the factors which determine complexity much has been said. Evolutionary biology,

for example, tries to explain emergence by means of natural selection. From an engineer-

ing standpoint, some theories propose that self-organization is the result of a optimized

design under resource constraints2.

We shall also mention an argument which provoked, and still provokes, many discus-

sions. We have pointed out that the elements which form complex systems interact in

some way which is not formalizable, but it is from these interactions that global prop-

erties emerge; properties that the individual elements did not have. It is thus worth

examining what the essence of these interactions is. The answer to this question might

say a lot about complex systems. On the one hand, scientific reductionism developed

by Descartes (which successfully contributed to natural sciences since the 16th century)

states that a system can be fully understood by knowing the details of each of its con-

stituent parts. This approach, which finds its roots in Greek atomism, is the one which

brought E. Zermelo to search for a complete axiomatic system for mathematics, or R.

Dawkins to reduce biological complexity to natural selection. Reductionism states that

interactions are deducible from the comprehensive knowledge of each of the system’s

constituents.

In contraposition to reductionism, holism or emergentism stresses the need for

viewing the system as a whole. The comprehension of each of the elements is not

enough in order to comprehend the system, and thus we conclude that the interaction

is something new. The interaction among the elements results in an organized whole.

This perspective has influenced the Gestalt psychologists, the Rashevsky-Rosen school

of relational biology3 and Hegel’s philosophy.

Even inside emergentism we recognize two currents of thought [40]: strong emer-

gentism considers that global self-organization cannot be reduced to simple interactions

among elements, not even in principle. Weak emergentism, instead, states that sim-

ple interaction rules might produce typical complex behavior, like global patterns and

hierarchical and ordered structure. The weak emergentist approach aims to develop sim-

ple simulation models of complex systems. Examples of them are Conway’s Game of

Life4 [75] and the agent-based models of complex systems.

2See the Highly Optimized Tolerance (HOT) model in Section 1.1.1, Example 4.
3See R. Rosen’s book [135].
4The Game of Life is a famous cellular automaton in which interesting patterns emerge from simple
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This discussion on whether complex systems’ interaction laws might be formalized is

still open. Meanwhile, we conclude that it is mandatory to revert the analytical approach

(based on the nature of the interaction) and take a systematic one (which is based on the

effects) in order to understand collective behavior as the macroscopical result of intricate

and unknown individual interactions.

1.1.1 Definition and examples

We combine the previously introduced concepts into the following definition:

Definition. A complex system is the result of the integration of components (generally

heterogeneous) which interact among them. From these interactions a collective behavior

emerges, a behavior which was not present in any of the components by itself. The

complex system is a self-organized structure (many times hierarchical) through whose

ordering the components cooperate constructively in order to perform a global function

or achieve a global result.

Our definition of complex system is probably influenced by Edgar Morin’s concept

of system as “unité globale organisée d’interactions entre éléments, actions ou indi-

vidus”5 [110]. For Mario Bunge a system is “un todo complejo cuyas partes o com-

ponentes están relacionadas de tal modo que el objeto se comporta en ciertos respectos

como una unidad y no como un mero conjunto de elementos”6 [32].

The similarity between both definitions might make us wonder whether all systems

are inherently complex, or whether some systems are more complex than others. Ac-

cording to Rolando Garćıa, for example, a complex system is “una totalidad organizada

en la cual los elementos no son separables y, por lo tanto, no pueden ser estudiados ais-

ladamente”7 [74]. For a deeper discussion on this epistemological question, we address

the reader to [134].

Next, we present a series of examples of complex systems:

Example 1: Protein folding

Proteins are complex polymers of amino acids which cells synthesize for performing

certain biological functions. In a process called protein folding, they adopt an stable

tridimensional configuration according to the function that they will perform.

rules. As the Game of Life is Turing equivalent, it questions the computability limitations of complex
systems. See Example 4 in Section 1.1.1.

5Our translation: “A global organized unit of interactions among elements, actions or individuals”.
6Our translation: “A complex whole whose parts or components are related in such a way that the

object behaves (in some sense) as a unit, and not just as a mere set of elements”.
7Our translation: “An organized whole in which the elements are not separable and thus cannot be

studied isolatedly”.
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Finding the more stable state for a certain protein implies finding the global minimum

of the free energy function, which is a hard problem from a computational point of view.

Figure 1.1: Protein folding. Proteins are formed by chains of amino acids which sponta-
neously fold in space, guided by ionic and intermolecular forces. They adopt a particular
tridimensional structure, according to the performed function.

According to the complex systems approach, we have a system (the protein) formed

by a large number of components (amino acids). Studying the amino acids separately

does not give any answer as to which function the protein performs. Nonetheless, the

protein as a whole has a specific global function, this function is related to its structure,

and its structure comes as a result of the interactions among the amino acids, which take

the form of covalent bonds, hydrogen bonds and disulfide bonds.

The computational problem of finding the optimal structure for a protein is NP-

complete. We cannot consider each amino acid by itself and determine its final position,

as the code for the process is not contained in the amino acids, buy in the chain. This

computational difficulty contrasts with the simplicity of this same problem for the biolog-

ical systems: the natural evolution of the system guided by the laws of physics inevitably

brings it to the stable state in just some microseconds [158]. In other words, nature does

not need to explore all the phase space in order to determine the final position8. This

8See in this sense Levinthal’s paradox [104].
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spontaneous process is quite usual in biological systems and is called self-assembly.

Typical computational methods for resolving the protein folding problem use artificial

intelligence techniques and data mining algorithms in order to explore the phase state

looking for the optimal structure [67].

Example 2: Social behavior

Wilhelm Wundt, considered to be the father of experimental psychology, stated in 1900

the idea that social behavior cannot be described exclusively in terms of the individuals.

Years later, his concepts were expanded by Gustave Le Bon, William McDougall an

Sigmund Freud9, and gave rise to a new discipline known as social psychology.

Throughout the 20th century, social psychologists designed experiments for studying

phenomena like influence and persuasion, rumor spreading, the construction of social

identity, the sense of belonging and cohesion, among others. We shall briefly mention

three of them:

Asch’s conformity experiment. In 1950 Solomon Asch showed that group pressure

might influence the individuals and distort their judgements about a certain topic.

In his experiments, Asch used to present a simple problem in front of a group of

people. The first ones to answer were confederates, and they intentionally made mistakes.

Then, it was the turn for the real subjects of the experiment to answer. Even though

they knew the correct answer, they were prone to give the wrong one.

Six degrees of separation. Stanley Milgram (a former student of Asch, and well-

known for his series of experiments on obedience to authority in 1963) performed in

1967 the so-called small-world experiment [149]. This work confirmed a thesis which had

been proposed several years earlier in social sciences: the fact that in large populations,

two people chosen at random lie at an average distance of about 5 or 6, measured as

the length of a chain of intermediaries needed to connect them. In this context, an

intermediary is someone who is known by the previous individual in the chain, and who

knows the next one.

In order to verify this hypothesis, Milgram designed the following experiment: he

chose 296 individuals in the United States, 196 of which lived in Nebraska, while the

remaining 100 lived in Boston. Each one of them was the initiator of a mail exchange

addressed to the same person: a stockbroker in Boston. None of the individuals knew

him, but they were provided with some basic information about him: name, address,

education, work, etc.. They were not allowed to contact him directly but only through

9See for example “Group Psychology and the Analysis of the Ego”, S. Freud, 1921.
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Council Bluffs (IO)Omaha (NE)

Belmont (MA)
Sharon (MA)

Boston (MA)

...      
   ...

Figure 1.2: Small-world experiment. 64 letters arrived at the final destination in Boston,
through a chain of intermediaries. While some of them geographically approached the
destination step by step, others showed a large jump from the State of Nebraska up to
Massachusetts. The average distance was 5.12 intermediaries.

an acquaintance, who should proceed in the same way. By means of a chain of interme-

diaries, 64 of the 296 individuals succeeded in delivering their mail to the final addressee

in common. An average distance of 5.12 intermediaries was found.

As one of his conclusions, Milgram stated that theoretical models should be developed

in order to explain this small-world behavior of social networks. We mention, for example,

the Watts-Strogatz model, which had a high impact, and will be discussed later on this

work.

The thesis stating that the world is connected by an average of 6 intermediaries

(which is known as six degrees of separation), has been validated by recent experimental

results of larger magnitude [101].

Conflict and fission. Between 1970 and 1972 W. Zachary studied the behavior of

the members of a karate club [160]. Due to a conflict between the group leaders (the

instructor and the club administrator) two factions were slowly conformed. Finally,

these groups led to the club fission, and those who supported the instructor conformed

a new organization. Before the fission, the club members did not consciously recognize

the existence of a political division, but Zachary observed that two groups had clearly
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emerged, sustained by affinity relationships.
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Figure 1.3: Zachary’s karate club network. Edges in the graph represent friendship
relationships between the club members. Zachary observed the emergence of two groups,
centered in the figures of the administrator and the instructor. The real existence of these
groups and their structure were later confirmed by the club split.

Following the ideas of previous anthropologists, Zachary represented the club social

network using a graph. Each vertex in the graph represented the members, and the edges

represented a friendship relationship. Applying known graph theory tools (in particular,

Ford-Fulkerson’s max-flow min-cut theorem) Zachary managed to predict the structure

of the two groups, which would be confirmed later by the club split.

Example 3: The World Wide Web

The Web is a global, decentralized information distribution network. Its information

units are the web documents, which are interconnected by hyperlinks. In 1999, Barabási

and Albert performed an automated Web exploration which collected data from about

300000 documents, connected by 1.5 million hyperlinks10 [3]. This data was used to

analyze the topology of the Web graph (a directed graph in which vertices represent

documents and directed edges represent hyperlinks from one document to another).

They obtained several novel results:

10The exploration data are available at Barabási’s personal site.
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• On studying the vertex degrees, they found that they obeyed a scale-free distri-

bution, i.e., they could be adjusted by a power-law, in which the probability of a

randomly chosen vertex having degree k is proportional to k−α, with 2 ≤ α ≤ 311.

This distribution accounts for the existence of high-degree vertices: the so-called

hubs.

• On measuring the average distance between two documents (i.e., the length of the

shortest path between them) they found the small-world property. They proposed

a model in which the network diameter grew with the logarithm of the number of

documents, in accordance with the Watts-Strogatz model [153].
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Figure 1.4: Vertex degree distribution of the Web graph. Barabási showed in 1999 that
the distribution of the number of hyperlinks in Web documents follows a power-law. This
figure shows the external degree (out-degree) (left) and the internal degree (in-degree)
(right) in Barabási’s exploration. The histogram was constructed using logarithmic
binning. The log-log linear regression of the data approximately follows a power-law.

Scale-free distributions belong to a larger family: the heavy-tailed distributions. From

Barabási’s work on, it has been proposed that scale-free distributions constitute an

inherent property of complex systems, but this question is still controversial. Scale-free

distributions are a particular expression of self-similarity, and this fact introduces the

fractal theory into the complex systems world.

Example 4: Cellular automata

Cellular automata are useful for modeling time evolving complex systems. They were

proposed by S. Ulam and J. von Neumann in the 40’es and rose to fame with a popular

automata known as Game of Life, created by J. Conway in 1970.

11A formalization of power-laws is presented in Appendix A of this work.
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A cellular automaton is a lattice whose elements (called cells) take a state from a

finite set K. The set of states of all the cells at any given time constitutes the automaton

configuration at that time. The automaton starts from an initial configuration and

evolves through discrete time steps following simple rules. These rules express the state

of each cell at time t+ 1 as a function of its own state and that of its neighbors at time

t.

The Game of Life. In the Game of Life the lattice is an N × N bidimensional grid

whose cells ci,j have two possible states: K = {alive, dead}. The state of cell ci,j at time

t will be called E(ci,j, t). The state at time t + 1 will depend upon its own state and

that of its neighbors at time t (here we consider the 8 cells around ci,j as its neighbors).

We shall call L(ci,j, t) to the subset of living cells of ci,j at time t, and D(ci,j, t) to the

subset of dead cells at the same time. The evolution rules are:

if E(ci,j, t) =dead ∧|L(ci,j, t)| = 3 ⇒ E(ci,j, t+ 1) = alive

if E(ci,j, t) =alive ∧|D(ci,j, t)| = 2 ⇒ E(ci,j, t+ 1) = alive

if E(ci,j, t) =alive ∧|D(ci,j, t)| = 3 ⇒ E(ci,j, t+ 1) = alive

else ⇒ E(ci,j, t+ 1) = dead .

In short, we may say that a cell is reborn when its neighborhood contains exactly

3 living cells, and stays alive as long as its neighborhood contains 2 or 3 living cells.

Otherwise, the cell becomes dead.

Figure 1.5 shows the evolution of the Game of Life on a 5× 5 lattice starting from a

specific initial configuration, during the first 5 time steps.

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 1.5: The Game of Life. Evolution during the first 5 time steps, starting from a
specific initial configuration. The two possible states are represented in dark blue (alive)
and light blue (dead).

The sandpile model and self-organized criticality (SOC). In 2002 S. Wolfram

classified cellular automata into 4 types, according to their long term behavior [157].

Fourth type automata are the ones of most interest to us, because they present typical
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complex behavior: long-range dependency and parameters following scale-free distribu-

tions.

The first cellular automaton on which these two phenomena were found is the sandpile

model proposed by Bak et al. in 1987 [13]. In its two-dimensional version, this model

considers that each cell accumulates grains of sand thrown at random. When 4 grains

are accumulated over the same cell, a collapse occurs and the 4 grains distribute among

the 4 neighbor cells (here we consider upward, downward, leftward and rightward cells as

neighbors). By simulating this automaton, Bak et al. observed the following behavior:

• A cell’s collapse produces in many cases a domino effect or avalanche, leading a

whole cluster of cells to collapse. By cluster of cells, we mean a set of cells in which

any cell can be reached from any of the others by transitivity of the neighborhood

relationship.

• On measuring the sizes of the affected clusters on each collapse, a power-law is

observed. This means that the domino effect might reach cells far away from the

departing one. This is a quite typical phenomenon in self-similar processes, and is

referred as long-range dependency).

• Life times of clusters also follow a power-law.

Bak et al. referred this behavior as self-organized criticality (SOC), because the

equilibria states are critical ones, i.e., a small perturbation might produce a collective

scale-free phenomenon (the avalanche). The SOC model accounts for the behavior of

many real phenomena like earthquakes, avalanches and lightnings.

The authors also analyze the sandpile evolution by using time series models of com-

plex systems, and show that self-similarity is revealed as 1/f noise (pink noise).

Forest-fires. In 1990 Bak et al. proposed a second cellular automaton called forest-

fire [12, 62]. This automaton simulates a forest in which trees are born and fires take

place which destroy them. It also presents the criticality phenomenon. In particular,

Bak et al. digged into the energy aspects of the system dynamics. They observed that

the energy entering the system, uniformly distributed in time and space (and encoded

as the birth of new trees) shows a fractal dimension when it dissipates through fire.

Highly Optimized Tolerance (HOT). Carlson and Doyle observed the behavior of

forest-fires and questioned the SOC mechanism. They proposed a new mechanism for

complex systems modeling which they called Highly Optimized Tolerance (HOT) [36].

The authors maintain that complex systems are the result of optimization (e.g., by



1.1. INTRODUCTION TO COMPLEX SYSTEMS 15

Equilibrium state Avalanches

Figure 1.6: Bak et al.’s sandpile model. For a 100× 100 grid, we show the configuration
after throwing 100000 sand grains at random (left). Colors represent 1 grain (grey),
2 grains (light blue) or 3 grains (blue). On the right, 5 possible avalanches for that
same configuration. An avalanche occurs when a sand grain falls over a cell containing
3 grains. Bak et al. observed a power-law on the avalanche size distribution.

means of natural selection or design)12, which aims at robustness and efficiency. In this

context, they prove that power-laws may arise as trade-offs between cost reduction and

fault-tolerance maximization.

In effect, they modified the original sandpile and forest-fire models by introducing

elements specifically designed for increasing benefits (in terms of tree density or sandpile

stability). In the forest fire, for example, fire barriers are introduced, which have limited

availability and are to be distributed in a convenient way). While the SOC model

manifested complexity at the critical point (a particular range of tree densities and fire

rates), Carlson and Doyle maintain that, under an optimized design, complexity does

not depend upon the model parameters.

In short, Carlson and Doyle state that the design complexity of complex systems is

not necessarily revealed in structure (except in some specific cases, like fractals). This

means that self-similarity is not to be expected in structure, but rather in behavior,

which emerges as a consequence of planned design and optimization.

1.1.2 Origin and historical evolution

It would be rather difficult, if not impossible, to determine the historical moment at which

a systemic approach was used for the first time in order to solve a scientific problem.

12Remember the discussion on the factors originating complexity in the introduction.
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But from the perspective of the scientific movements of the last century, we recognize

two clear precedents: the Austrian School of Economics and Cybernetics.

The economists from the Austrian School maintained around 1930 that economic

markets might benefit from the mutual adjustment of individual economies. These in-

teractions might lead to spontaneous order with no need for a central control. They

proposed models based on free market, competition and laissez-faire. The major expo-

nents of this school were L. von Mises, F. Hayek and C. Menger.

Cybernetics was conceived for studying self-regulating systems, like living organisms

and machines. It is closely related with Control Theory, and its approach is based on the

feedback concept. In general terms, cyberneticians hold that feedback is a redundancy

source. This redundancy reduces the system entropy and drives the system towards

self-organization. Some of the most prominent cyberneticians of the 20th century were

H. von Foerster, N. Wiener and J. von Neumann.

Table 1.2 summarizes some historical facts in the study of complex systems, from

1950 up to now.

1.1.3 Complex Systems as an interdisciplinary field

Interdisciplinarity is an essential aspect of the work in Complex Systems. When W.

Weaver introduced the problems of complexity in 1948, he predicted that this new science

would require the joint work of mathematicians, physicists, engineers and psychologists,

among other experts. By means of specialization, each area would offer its own resources

and techniques so that the work team could have a global vision of the problem[155].

These big areas that W. Weaver mentioned can be expanded to include Chemistry,

Biology, Sociology and Economics, for example. As well as an endless number of disci-

plines which lie at the intersection between two or more areas. Some of them are:

• Systematic Biology: It studies biological systems in terms of their interactions,

and builds mathematical models for explaining the evolution and function of those

systems.

• Complexity Economics: It studies the self-organization of the economy based

on the dynamics of individual agents which interact among them. It uses ideas

from Game Theory.

• Mathematical Sociology: It studies social phenomena through mathematical

modeling. It analyzes social structure and social network formation.

In the current work we are particularly interested in the tools offered by three big

areas which we shall briefly describe: Mathematics, Physics and Computer Sciences.
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1955 H. Simon proposes preferential attachment as a mechanism for explaining the

origin of power-laws like Pareto’s Law (1896), Gibrat’s Law (1931) and Zipf’s

Law (1935).

1967 S. Milgram conducts the small-world experiment [149].

1969 T. Schelling (Nobel in Economics, 2005) proposes one of the first agent-based

complex systems model for studying racial segregation.

1970 J. Conway designs the cellular automaton known as Game of Life, in which

global patterns emerge from simple local rules [75].

1975 B. Mandelbrot develops fractal theory.

1984 The Santa Fe Institute is born. It becomes a world reference in Complex Sys-

tems. J. Holland coins here the term adaptive complex system as an evolution

from agent-based complex systems. In adaptive complex systems, the agents

have adaptive capacity (they may learn and acquire experience).

1985 R. Rosen formalizes complex system modeling using Category Theory.

1987 Bak et al. propose the concept of self-organized criticality (SOC) to explain

the existence of scale-free distributions in complex systems. The SOC model

states that complex systems lie at the midpoint between order and chaos. They

use the sandpile model as an explanatory example [13].

1989 Bak et al. introduce the forest-fire model: a cellular automaton presenting the

self-organized criticality property [12].

1993 Leland et al. find that data traffic in high-speed networks presents self-similar

behavior and long-range dependency [100].

1998 D. Watts (Santa Fe Institute) y S. Strogatz (Cornell University) propose a

model that reproduces the small-world behavior [153].

1999 Based on the forest-fire model, J. Carlson and J. Doyle design a mechanism

for modeling complex systems, which they call Highly Optimized Tolerance

(HOT) [36]. They show that power-laws emerge from it.

1999 Barabási and Albert discover a power-law in the hyperlinks distribution of web

documents [3].

1999 Faloutsos et al. discover a power-law in the Internet topology [66].

1999 Barabási and Albert propose a model based on preferential attachment. This

is the first model to capture the scale-free distributions found in the Web and

the Internet [14].

1999 Fabrikant et al. propose the FKP model: a graph model with scale-free degree

distribution [65] inspired in the HOT mechanism.

Table 1.2: Some prominent historical facts in the study of complex systems.
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1.1.3.1 Mathematics and Complex Systems

By means of Mathematics, complex systems models are formalized. Graph Theory, Cel-

lular Automata Theory, Differential Equations Theory and Game Theory offer some of

the most useful tools. Graph Theory is of most importance for us because combinato-

rial models of complex systems are represented by graphs. A graph representation of a

complex system is usually called a complex network.

Lastly, many complex systems models involve optimization problems. In the case of

complex networks these problems take the form of Combinatorial Optimization.

1.1.3.2 Physics and Complex Systems

Complex systems are typically formed by a large number of elements in a state of dy-

namic equilibrium (see for example the SOC model). Because of this, Statistical Physics

methods are quite adequate for predicting the macroscopic behavior in term of micro-

scopic interactions which use to be modeled as random.

The conception that complex systems are designed under resource constraints (re-

member the HOT model) introduced an energetic approach in which the system behavior

is the result of the minimization of some energy function. This energetic approach trans-

lates into looking for the system’s Hamiltonian, for example. In this sense, some works

analyze the interactions in terms of the Ising or Potts models from Statistical Mechanics.

1.1.3.3 Computer Sciences and Complex Systems

Computer Sciences are mainly involved in the simulation of complex systems models.

With the increase in computing power achieved during the last decades it became possible

to process large amounts of data and run large scale simulations. It is in this context

that researchers could observe power-laws in the Internet, study large temporal series in

financial markets, or analyze the human genome, for example.

Computation is also essential for addressing the combinatorial optimization prob-

lems which usually appear in combinatorial models. It also offers tools for heuristic

optimization and for studying the computational complexity problem.

Lastly, several disciplines born from Computer Sciences involve processing large vol-

umes of data in order to infer patterns, rules or global characteristics. This is the case

of Data Mining, Pattern Recognition and Artificial Intelligence. The language of these

disciplines is quite close to the systematic approach of Complex Systems. By combining

Artificial Intelligence with agent-based models, multi-agent systems arose.
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Figure 1.7: Formalization of complex systems models proposed by R. Rosen [136]. The
first step consists in observing the behavior of the natural system. The second step
consists in encoding it to obtain a formal system. On a third stage, the formal system
is manipulated, defining inference rules to reproduce the causal dynamics of the original
system. The formal system is a model when steps 2 + 3 + 4 succeed at reproducing the
natural system behavior (1 = 2 + 3 + 4).

1.2 Models of complex systems

A model is a system representation which is used for studying and describing it. In

particular, complex systems models are simplified representations which capture some of

the system properties. In many cases models predict the system behavior and account

for the existence of global patterns, but they cannot explain nor predict the behavior of

the individual agents [89].

In the previous section we mentioned several complex systems models: Zachary’s

karate club network, the Game of Life and the forest-fires, among others. Complex

systems models are formalized by means of mathematics.

From an epistemological point of view, the importance of models in science is being

discussed since around 1950 [136] and has an extensive bibliography13. In particular, we

shall present a formalization of the modeling process which R. Rosen presented in 1985,

and which is based on Category Theory [135]. Rosen defined the modeling relation as a

four-stage process (see Figure 1.7). On the first stage we observe the natural system as

it evolves following unknown causal laws. On a second step, we encode it to get a formal

system. The third stage aims at defining appropriate inference rules and making the

system evolve through them, expecting it to reproduce the causal behavior of the natural

system. Finally, the formal system results are decoded and we compare them against the

natural system’s causal dynamics. In case we succeed, then we indeed developed a system

model which can be used for predicting its future behavior.

13A good reference on this is D. Bailer-Jones’ book [11].
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We propose here a non-exhaustive classification of the mathematical models used in

Complex Systems. The type of model to be used depends on the problem we want to

solve and the properties we want to study. A single model will not capture each and

every aspect of a complex system, and several models are usually needed when more

than one property is being explored14.

Models in Differential Equations. In a great number of complex systems variables

can take continuous values, or at least the problem dimension is large enough to replace

the discrete domain for a continuous one. In these cases, and specially when we deal

with dynamical systems (in which the variables are a function of time), it is quite usual

to find models stated in terms of differential equations.

Population growth models are a classical example. Among them, we find F. Verhulst’s

logistic equation (1845) and Lotka-Volterra’s predator-prey equation (1926). We also

highlight the epidemic diffusion models like Kermack-McKendrick’s SIR model (1927)

and its variations, which influenced many health policies on the 20th century. From

the 60es onwards, they have also been used for modeling social phenomena like rumor

spreading and information distribution.

The forementioned models are referred to as mean-field, because the do not take

into account the spatial position of individuals neither their interactions, but they only

consider the statistical average of the latter. Applying infection rates in spreading models

or birth rates in population ones, is a consequence of a mean-field approach. Mean-field

models might be branded as simplistic or reductionist, but in many cases they are quite

effective for extracting important conclusions, as the expected amount of infected people,

or the expected population after some amount of time.

Some models in differential equations do consider spatial dynamics. This is the case

of the diffusion models and brownian motion.

Models in Recurrence Equations. These models are the discrete equivalents for

the models in differential equations. Two of them are R. May’s logistic map (1976)

(which is the discrete equivalent for the logistic equation, and has a chaotic behavior) an

Leslie’s matrix in population ecology (a matrix equation modeling a species population

dynamics).

Time Series Models. The interest in analyzing time series arose in 1900 with L.

Bachelier’s work on financial markets. Bachelier assumed a normal, independent distri-

bution on price variations (which is known as one-dimensional brownian motion), but

14Remember in these sense Mikulecky’s quote at the chapter’s outset.
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data accumulated throughout a year showed a clear deviation from Bachelier’s model. It

was not until 1963 that B. Mandelbrot observed the self-similar nature of the data and

conjectured that price variations followed a Lévy distribution.

The fact is that many time series of economic magnitudes show scale-free behav-

ior (which is observed, for example, as a power-law on the spectral density, i.e., 1/f

noise) and long-range dependency (i.e., hyperbolic decaying time correlations, instead

of exponential ones). The same phenomenon was observed more recently in traffic mea-

surements at high-speed links, in which several traffic flows aggregate, which come from

a large number of final users [100]. These facts increased the interest on studying and

modeling these processes. The best-known times series models that reproduce long-range

correlations are the FARIMA process (autoregressive fractionally integrated moving av-

erage) [84] and Fractional Gaussian Noise (FGN). Both of them are computationally

expensive.

The long-range “memory” of time series can be quantified by Hurst’s exponent15.

Some works link this exponent with a fractal dimension, though in principle long-range

correlations and fractality are different phenomena and are not necessarily correlated [79].

Agent-based models. Agent-based models consider each element of the complex sys-

tem as an agent, and define rules (either deterministic or stochastic) for regulating the

interactions among them. Then the model evolves following these rules. Agent-based

models can be applied into a great variety of problems and, more than being just a type,

they define a conception from an epistemological point of view. Agent-based models

offer a holistic approach because they focus on the interactions.

We emphasize that cellular automata models and combinatorial ones (which are the

aim of this thesis) are deep down a particular case of agent-based models.

Figure 1.8 illustrates agent-based models with the behavior of a group of termites

which organize in a decentralized fashion in order to accumulate wood. The example

was extracted from the StarLogo project16.

Cellular Automata Complex Systems Models. Formally, a cellular automaton

can be defined as a triple (G,K, f) in which:

• G is a graph whose vertices constitute the automaton cells, and whose edges reflect

the neighborhood relationship among them.

• K is a set of states.

15H. Hurst studied in 1965 the evolution of the Nile river’s reservoirs (sustained on historical data)
and he detected the presence of long-range correlations.

16http://education.mit.edu/starlogo/, MIT Media Laboratory.

http://education.mit.edu/starlogo/
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Figure 1.8: Agent-based models. The StarLogo project, designed by Mitchell Resnick,
aims at studying decentralized systems from the optics of agent-based modeling. The
picture shows the termite example. A 50×50 lattice contains randomly placed woodchips
(in brown). A total of 15 termites move randomly and independently applying a simple
rule: If they find a woodchip, they pick it and go on. On finding a second woodchip they
search for a free position, and as soon as they find it, they deposit on it the woodchip
they had previously found. (Left) Initial woodchips disposition. (Central) Some time
later, some wood accumulations can be observed. (Right) Finally, the termites manage
to concentrate most of the woodchips into 4 piles.

• f is a set of mappings fi, one for each vertex, which define the transition rules on

the cell states as a function of their own state and that of their neighbor cells.

Cellular automata have shown that from very simple rules an organized behavior

may emerge. This has been previously shown in deterministic automata like the sand-

pile17. By using automata with stochastic transition rules (as in the forest-fires), instead,

percolation phenomena can be modeled.

Cellular automata are a particular implementation of the agent-based conception,

and they replace the mean-field approach by an interaction-based one. The SIR model

(which is originally a differential equation model) has its own cellular automaton ver-

sion. Schelling’s social segregation model (1969) has also been implemented as a cellular

automaton.

It is usual to see cellular automata in Economics when modeling the interaction of

many economic agents using tools of Game Theory.

Combinatorial Models. Combinatorial Models represent complex systems by means

of a network in which the connections between nodes reflect the interactions between

the system elements. The network associated to a complex system is called complex

network. Complex networks are quite effective for modeling transport phenomena and

information flow in complex systems (e.g., the Web and the Internet). They are also

17See Example 4 in Section 1.1.
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useful for studying people interactions and social networks.

Research in the area of combinatorial modeling is so broad that it gave rise to a

discipline known as Complex Networks or Network Science.

1.2.1 Inherent problems of complex systems modeling

Modeling complex systems according to the procedure described in Figure 1.7 states some

interesting problems which we shall briefly discuss. The first of them is the concept of

model simulation. Making the formal system evolve in terms of some defined inference

rules (step 3) requires a computational procedure. It is important to pay attention to

the amount of resources require to execute this procedure (for example, in terms of

computation time or available physical memory) and to study the way in which these

resources scale with the system size18. This relationship is approached by Computational

Complexity Theory. Several factors affect on the computational complexity of a model

simulation:

• The formal system simplicity. The simpler the formal system is (in terms of number

of variables and complexity of the inference rules) the easier its simulation will be.

A model simplicity may go to the detriment of its accuracy, so that a trade-off

between these two is many times required. Even so, and according to the principle

of parsimony, from two equally efficient models we should always prefer the simpler

one.

• The computational procedure. One same model may be executed more of less

efficiently, according to the designed computational procedure. Optimizing algo-

rithms and data structures may be an important step towards developing a good

simulation model.

• Approximation criteria. In many cases models are not exactly simulated, but rather

their results are approximated. For example, differential equations are usually

solved by numerical methods, and discretization levels and stopping criteria must

be defined. Searching for a maximum in a combinatorial optimization problem

also requires the definition of exploration criteria (heuristics) and stopping criteria.

These choices may seriously affect computational complexity. Again, a trade-off is

required between result quality and simulation scalability.

18Let us recall the protein folding problem in Example 1 in Section 1.1: while the natural system
stabilizes in a microscopical time, the evolution of the formal system requires a time which is exponential
on the number of amino acids.
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In short, a good simulation model should be simple, should use efficient algorithms and

data structures, and should define appropriate approximation criteria (when it is not

solved exactly).

The second important problem is model evaluation: once the model results were

obtained, they must be evaluated. According to Figure 1.7, evaluation consists upon

comparing the natural system dynamics (step 1) against the results predicted by our

model (steps 2+3+4). These comparison is not trivial, because we shall seldom observe

strict equality between them. It becomes necessary to define metrics in order to quantify

the similarity between the model and the natural system. And even more, it may be

useful to measure the similarity between results provided by different models, or between

different approximation criteria under one same model. The problem of comparing and

measuring results is of most importance in Complex Systems.

In our contributions throughout this thesis, we shall put special stress on these two

aspects. In each proposed model we shall discuss the simulation problem and the com-

putational complexity, and we shall establish criteria for evaluating our results and com-

paring them against what is observed in real systems.



Chapter 2

Combinatorial Models of Complex

Systems

Graphs are an important tool for representing combinatorial models. So we shall start

this chapter with a brief introduction to Graph Theory and we shall present some of the

mathematical notation used throughout this work.

Next, we shall present some important results, both theoretical and experimental, in

the field of Complex Networks. This will help us understand the connection between

model building processes and real networks observation.

Finally we shall explore some of the best-known combinatorial models. Some of

them (as the Barabási-Albert model) aim at explaining the arousal of power-laws in the

Web and the Internet. Others (as the Watts-Strogatz model) focus on the small-world

phenomenon. Each model addresses one or more aspects of the complex systems and

tries to reproduce them as tightly as possible. In general, each proposition for a new

model is discussed by the scientific community and, after a validation and adjustment

process, the model is either reinforced, rejected, o replaced by a surpassing one. When

appropriate, we shall comment on this dynamic and on the historical evolution of the

models.

2.1 Introduction to graphs

Network graphs are a mathematical representation of the interaction between the ele-

ments of a complex system. Each element will be represented by a graph vertex, while

the interactions between elements will be represented by graph edges. A graph can be

visualized as a set of points connected by segments, as illustrated by Figure 2.1.

There are many variations on this general scheme: in some cases we have to deal

with directed graphs, in which the edges are ordered pairs. In other cases, numerical

25
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Figure 2.1: A graph representation. Visual representation of a graph G containing 7
vertices and 9 edges.

values can be assigned to either vertices or edges, thus getting a weighted graph. Finally,

the interactions may involve more than two elements, or a variable number of them, in

which case we are in the presence of an hypergraph.

The tool set offered by Graph Theory is quite wide. We suggest as bibliography the

books by West [156] and Bollobás [26]. Our notation is based on West’s book.

2.1.1 Notation and graphs representation

A graph G is a triple determined by the following three elements:

• A vertex set, V (G).

• An edge set, E(G).

• A relation which associates each edge with a pair of vertices, referred to as its

endpoints.

Graph order and size. The number of vertices and edges in a graph G will be re-

spectively denoted n(G) = |V (G)| (graph order) and e(G) = |E(G)| (graph size)1.

Types of graphs. A graph is called simple when it has neither loops (edged whose

endpoints fall on the same vertex) nor repeated edges. A graph containing repeated

edges is called a multigraph.

When the edges are ordered pairs of vertices, the graph is called a directed graph or

digraph. Otherwise, the graph is undirected.

1Given a set A, |A| will denote the set cardinality.
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When the graph vertices and/or edges are associated to a numerical value (called

weight, the graph is called a weighted graph. Otherwise, the graph is just unweighted.

In this section we shall consider simple unweighted graphs, either directed or undi-

rected. Throughout our work we shall make the same consideration, unless explicit

mention.

Adjacency relation. In undirected graphs, if an edge e’s endpoints are u and v, we

shall write e = uv. We shall say that u and v are adjacent (or neighbors) when uv ∈ E(G).

The adjacency relation will be denoted as u↔ v. When u↔ v holds, we shall also infer

that u→ v and v → u.

In directed graphs, instead, each edge is an ordered pair, and we shall denote it as

e = (u, v). We shall say that u→ v, u being e’s head, and v being e’s tail.

In both cases (directed or undirected) when u→ v we shall say that v is u’s neighbor,

that u precedes v, or v succeeds u. We shall also say that the corresponding edge goes

from u to v, that it departs from u, and that it is incident on v.

Adjacency matrix. We shall usually enumerate the vertices in a graph in a consec-

utive way, as v1, v2, ..., vn(G). Based on this enumeration, a graph G can be univocally

described by its adjacency matrix A(G), an n(G)× n(G) matrix defined as:

A(G) = (aij) = (1{vi → vj}) .

The adjacency matrix is usually sparse. In undirected graphs it is also symmetric, as

(vi → vj) → (vj → vi). In directed graphs, instead, it is in general non-symmetric. For

the example in Figure 2.1 the adjacency matrix is

A(G) =



0 0 0 0 1 1 0

0 0 0 1 1 0 0

0 0 0 1 1 0 0

0 1 1 0 1 0 1

1 1 1 1 0 1 0

1 0 0 0 1 0 0

0 0 0 1 0 0 0


.

Degrees and neighborhoods in undirected graphs. The degree of a vertex, d(v),

is defined as the number of edges which are incident on it. That is:

d(v) = |{e ∈ E : e is incident on v}| .
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The degree may also be computed from the adjacency matrix as

d(vk) =
∑
i 6=k

aik .

In undirected graphs, the degree-sum formula holds:

∑
v∈V (G)

d(v) = 2e(G) .

The neighborhood of a vertex v, N (v), is the set formed by v’s neighbors:

N (v) = {u : v → u} .

In simple graphs N (v)’s cardinality equals v’s degree.

Degrees in directed graphs. In directed graphs the degree is decomposed into an

internal degree, d−(v), which is the number of edges which have v as their head, and the

external degree, d+(v) which counts the edges for which v is their tail.

d−(v) = |{e = (x, y) ∈ E : x = v} d+(v) = |{e = (x, y) ∈ E : y = v} .

Directed graphs verify the degree-sum formula for directed graphs:

∑
v∈V (G)

d−(v) =
∑

v∈V (G)

d+(v) = e(G) .

Paths and distances In undirected graphs, two edges are said to be adjacent when

they share one of their endpoints. In directed graphs, an edge e1 is adjacent to an edge

e2 when e1’s tail matches e2’s head.

A path between two vertices u, v is an edge sequence (e1, e2, ..., en) such that each edge

in the sequence is adjacent to the next one in it, e1 departs from u, and en is incident

on v. u and v are called the path endpoints. The length of a path is its number of edges.

Every vertex u has a zero-length path which goes from itself to itself, containing no

edges.

A path is said to be a cycle when its length is non-zero and its two endpoints fall on

the same vertex.

Two vertices u, v are connected when there exists a path between them.

Two paths are edge-disjoint when they share no edges.

Two paths are vertex-disjoint when they share no edges, excepting their endpoints.
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The maximum number of pairwise vertex-disjoint paths between u and v is denoted

λ(u, v).

The maximum number of pairwise edge-disjoint paths between u and v is denoted as

λ′(u, v).

Property: Every set of pairwise vertex-disjoint paths between u and v is also a set

of pairwise edge-disjoint paths. Thus, λ′(u, v) ≥ λ(u, v).

The distance between two connected vertices u, v is the minimum length of a path

between them. We shall represent it by d(u, v). Every path between u, v which realizes

this distance is a shortest path between u, v. When two vertices u, v are not connected,

we define d(u, v) =∞.

Property: The adjacency matrix is useful for computing the distance between ver-

tices. Two different vertices vi and vj lie at a distance d if and only if for every integer

k < d : [A(G)k]ij = 0, whereas [A(G)d]ij 6= 0. The element [A(G)l]ij points out the

number of different paths of length l between vi and vj.

By performing a breadth first search (BFS) on G, the minimum path between two

vertices u, v can be found in a time O(e(G))2.

Subgraphs. A graph H is a subgraph of G if and only if V (H) ⊂ V (G) and E(H) ⊂
E(G), and the edges in E(H) have the same endpoints assignment in H as in G. When

V (H) = V (G), H can be obtained by successive elimination of the edges in M =

E(G) \ E(H). In this latter case we shall say that H = G−M .

The subgraph of G induced by a vertex set T ⊂ V (G) is obtained from G by successive

elimination of the vertices in T̄ = V (G) \ T , and of all the edges which incide onto some

vertex in T̄ . We denote this subgraph as G[T ], or G− T̄ .

Connected components. In undirected graphs, the relation “being connected” be-

tween vertices is an equivalence relation. This makes it possible to define equivalence

classes C1, C2, ..., Cc(G) which constitute a partition of the vertex set V (G). Subgraphs

G[Ci] induced by this equivalence relation are called the connected components of G. As

it is impossible for an edge to connect vertices belonging to different equivalence classes,

it follows that the union of the connected components of G equals the whole graph. The

number of connected components in G is denoted as c(G).

We call a graph connected when it has a unique connected component, that is, when

for every pair of vertices u, v ∈ V (G), u and v are connected. Otherwise, the graph is

disconnected.

2For weighted graphs in general (and with non-negative weights on their edges) Dijkstra’s algorithm
finds a minimum path in O(e(G) + n(G) log n(G))
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The equivalence classes are maximal sets regarding the “being connected” relation.

As a consequence, every connected subgraph of G is contained in a connected component

of G. The connected components of G are maximally connected subgraphs of G regarding

this property.

When speaking of connectivity in directed graphs, we shall mean strong connectivity:

two vertices u and v in a directed graph are strongly connected when there exists a path

from u to v, and there also exists a path from v to u. When referring to the connected

components of directed graphs, we shall implicitly mean strongly connected components.

Cuts. Given two sets S, T ⊂ V (G), we denote by [S, T ] the set of edges departing from

vertices in S and being incident on vertices in T 3:

[S, T ] = {e : e departs from x and is incident on y, x ∈ S ∧ y ∈ T} .

An edge-cut is an edge set [S, S̄], with S 6= ∅ and S̄ 6= ∅.
The capacity of an edge-cut is the number of edges in it, and we denote it as |[S, S̄]|.
In a connected graph G, every edge-cut is a separating set of G, in the sense that

G− [S, S̄] is disconnected.

A (u, v)-edge-cut is an edge-cut which leaves u and v in different connected compo-

nents of G− [S, S̄].

A (u, v)-vertex-cut, or just (u, v)-cut S, is a set of vertices S ⊂ V (G) − {u, v} such

that G− S has u and v in different connected components.

The size of a cut S is the number of vertices in it.

The minimum among the sizes of all (u, v)-cuts is called κ(u, v), and can be computed

by using Ford-Fulkerson’s algorithm [69].

Edge-connectivity and connectivity between vertices. The minimum number of

edges to be removed in order to leave u and v in different connected components is called

edge-connectivity between u and v, and is denoted as κ′(u, v).

Menger’s Theorem (edges): ([156], page 168) The minimum number of edges

to be removed in order to leave u and v in different connected components equals the

maximum number of pairwise edge-disjoint paths between u and v:

κ′(u, v) = λ′(u, v) .

3In particular, in case S and T overlap, if both edge endpoints belong to the intersection, then the
edge is to be counted twice.
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Figure 2.2: Cuts and edge-cuts in graphs. (Left) A (1, 5)-edge-cut in a directed graph,
in which S = {1, 2}. This is a (1, 5)-edge-cut because 1 ∈ S and 5 ∈ S̄. The capacity
of this edge-cut is 2. This is not a minimum (1, 5)-edge-cut, as other (1, 5)-edge-cuts
exist with capacity just 1. (Right) A (1, 5)-cut in the same graph. Here, S = 3, and the
cut size is 1. This is a (1, 5)-cut because removing vertex 3 leaves 1 and 5 in different
connected components.

The minimum number of vertices to be removed in order to leave u and v in different

connected components is called connectivity between u and v, and is denoted as κ(u, v).

It equals the minimum size of a (u, v)-cut:

κ(u, v) = min{|S|, S is a (u, v)-cut} .

Menger’s Theorem (vertices): ([156], page 167) The maximum number of pairwise

vertex-disjoint paths between u and v equals the minimum size of a (u, v)-cut:

λ(u, v) = min{|S|, S is a (u, v)-cut} .

From κ(u, v)’s definition and Menger’s Theorem, it follows that the connectivity between

u and v equals the maximum number of pairwise vertex-disjoint paths between u and v:

κ(u, v) = λ(u, v) .

For clarity, when dealing with several graphs at the same time we shall point out

the graph names as parameter subindices. For example, when we write dG(v) we

shall mean “v’s degree in graph G”. But when we consider it unnecessary, we shall

omit this reference.
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2.1.2 Graph invariants

A graph invariant is a graph function which only depends on its abstract structure, i.e.,

it is conserved under different graph enumerations (isomorphisms) and visual representa-

tions. Some graphs invariants are: order, size, connectivity, edge-connectivity, diameter,

chromaticity, arboricity, characteristic polynomial, assortativity and global clustering

coefficient. Now we shall briefly present some of them. In the next section, “Centrality

measures of vertices and edges”, we shall see that some of these measures also induce

global invariants.

2.1.2.1 Connectivity

The connectivity of a graph is the minimum cardinality of a vertex set S ⊂ V such that

G−S is disconnected or has just one vertex. In other words, it is the minimum number

of vertices to be removed in order to get a disconnected graph, or a graph with just one

vertex4. The connectivity of a graph G is denoted κ(G). Equivalently:

κ(G) = min
u,v∈V (G)

κ(u, v) = min
u,v∈V (G)

λ(u, v) = min{|S|, S is a cut } .

A graph G is k-connected if its connectivity is at least k.

2.1.2.2 Edge-connectivity

The edge-connectivity of a graph G if the minimum cardinality of a edge set F ⊂ E(G)

such that G− F is disconnected. The edge connectivity of a graph G is denoted κ′(G).

Equivalently:

κ′(G) = min
u,v∈V (G)

κ′(u, v) .

From Menger’s Theorem for edges, it follows that:

κ′(G) = min
u,v∈V (G)

λ′(u, v) .

Now, as a consequence of Ford-Fulkerson’s maximum flow and minimum cut theorem

([156], page 180), the minimum among the capacities of all u, v-edge-cuts equals the

maximum number of edge-disjoint paths between u and v:

min{|[S, S̄]|, [S, S̄] is a u, v-edge-cut} = λ′(u, v) .

4The possibility of getting a graph with one vertex has been added so that the definition equals
the minimum (for any two vertices) among all the maximum numbers of pairwise vertex-disjoint paths
between each pair.



2.1. INTRODUCTION TO GRAPHS 33

The last two results imply that the edge-connectivity of a graph G equals the minimum

of the capacities of all its edge-cuts:

κ′(G) = min
S⊂V (G),S 6=∅

{|[S, S̄]|} .

A graph G is k-edge-connected if its edge-connectivity is at least k.

2.1.2.3 Diameter

The diameter of a graph G is the maximum distance between vertices:

diam(G) = max
u,v∈V (G)

d(u, v) .

The diameter of a graph is infinite if and only if the graph is disconnected.

2.1.2.4 Clustering coefficient

In undirected graphs5 the clustering coefficient of a vertex is a measure of the edge

density among the vertex neighbors [153]. Given a vertex u with degree d(u) ≥ 2, the

maximum number of edges between its neighbors is 1
2
d(u)(d(u)−1). Thus, the clustering

coefficient is defined (for vertices with degree bigger than 1) as the ratio between the

number of edges in the neighborhood and its maximum:

cc(u) =
2
∑
{v,w}⊂N (u) 1{vw ∈ E(G)}

d(u)(d(u)− 1)
.

It is quite usual to analyze the clustering coefficient distribution as a function of vertex

degree.

The global clustering coefficient of a graph is an invariant, and is computed as the

ratio between the number of ordered triangles and the number of triplets6. An ordered

triangle is an ordered triple (u, v, w) such that u → v, v → w,w → u, while a triplet is

5Some clustering coefficient extensions exist for weighted graphs [16].
6Some authors define the global clustering coefficient as the average between the clustering coefficients

of the vertices:
1

n(G)− |{u ∈ V (G), d(u) = 1}|
∑

u∈V (G),d(u)>1

cc(u) .

However, we prefer the other definition, and to this one we shall refer as average clustering coefficient,
cc(G). Anyhow, our definition is a weighted average of the clustering coefficients of the vertices, where

each vertex is weighted by a factor d(u)(d(u)−1)
2 .
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an ordered triple (u, v, w) such that u→ v, v → w:

cc(G) =

∑∑ =

∑
u,v,w 1{u→ v, v → w,w → u}∑

u,v,w 1{u→ v, v → w}
.

The global clustering coefficient thus defined equals the so-called transitivity ratio, which

quantifies the transitivity of the adjacencies. It lies between 0 and 1.

Figure 2.3: Clustering coefficient. We illustrate the neighborhood of vertex 3, formed
by N (3) = {1, 2, 4, 5, 6}. Edges between neighbors are depicted in red. The clustering
coefficient for vertex 3 is cc(3) = 2·4

d(3)·(d(3)−1)
= 0.4.

2.1.2.5 Degree distribution and average degree

The vertex degree sequence, either put in increasing or decreasing order, is a graph

invariant. From this sequence we can define the probability function of vertex degrees,

pv(k), as7:

pv(k) = Pv[d(v) = k] =

∑
v∈V (G) 1{d(v) = k}

n(G)
, k ∈ Z+ .

The value of pv(k) for a certain k represents the probability of observing a vertex with

degree k when picking it at random from the set V (G).

The mean of this distribution, Ev[d(v)], is called average degree of the graph. We

shall denote the variance of the degree distribution as σ2
v(d(v)). For simplicity, we shall

also use the notation d = Ev[d(v)] and σ2(d) = σ2
v(d(v)).

The maximum (minimum) between the degrees of all the vertices is called maximum

(minimum) degree, dmax(G) (dmin(G)). Either having a degree distribution pv(k), or a

mean degree d, or variance σ2(d), or a certain maximum (minimum) degree are all of

them graph invariants.

7The subindex v refers to the elements of the sample space, i.e., V (G).



2.1. INTRODUCTION TO GRAPHS 35

2.1.2.6 Neighbor degree distribution

We shall also be interested on the degree distribution of neighbors of vertices with degree

k, which is defined from the subset of vertices with degree k of the graph, in the following

way8:

puv(k
′|k) = Puv[d(v) = k′|d(u) = k] =

1

pv(k)n(G)

∑
u∈V (G),d(u)=k

∑
uv∈E(G) 1{d(v) = k′}

k
.

A similar result would be obtained if picking a vertex at random and uniformly among

the subset of vertices with degree k, and then picking one of its k neighbors at random

and uniformly, and finally observing the neighbor degree.

The average neighbor degree of vertices with degree k is called knn(k) and can be

computed as [125]:

knn(k) =
∑
k′∈Z+

k′ · puv(k′|k) .

2.1.2.7 Vertex assortativity by degree

Vertex assortativity by degree is the correlation measure between the degrees of adja-

cent vertices [112]. In undirected graphs, it is defined in terms of expected values and

deviations in which the sample space is the set of graph edges9:

a(G) =
Euv[d(u)d(v)]− Euv[d(u)] · Euv[d(v)]

σuv[d(u)] · σuv[d(v)]
.

In terms of knn, degree assortativity can also be expressed as [35]:

a(G) =
d
∑

k∈Z+ [k2p(k)knn(k)]− d2
2

dd3 − d2
2 .

As it is a correlation measure, degree assortativity fulfills the following property: if

the endpoints of a randomly picked edge uv, d(u) and d(v), are considered as random

variables, degree assortativity equals the slope of the regression line between them10.

• A positive degree assortativity suggests a high correlation between degrees of ad-

8The edges in E(G) are picked with uniform distribution here. If the graph is undirected, when
extracting an edge uv from the edge set E(G), the edge should be randomly ordered either as (u, v) or
(v, u), with uniform distribution. The joint probability puv(k, k

′) represents the probability of observing
endpoints with degrees k and k′ when picking an edge (u, v) at random. In this sense, puv(k

′|k) can be
understood as the conditional probability of d(v) given d(u).

9Some degree assortativity extensions exist for directed and weighted graphs [16].
10In a more general case, correlation between two random variables, X and Y , equals the slope of the

regression line between the normalized variables X ′ = X−µX

σ(X) and Y ′ = Y−µY

σ(Y ) . In this particular case

both variables are identically distributed and this normalization is not necessary.
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jacent vertices: high degree vertices prefer to connect among them, and the same

applies for small degree ones.

• A negative degree assortativity also accounts for a high correlation, but in this case

small degree vertices prefer to connect to high degree ones, and vice versa.

• A near-zero assortativity expresses a poor correlation between degrees of adjacent

vertices.

Assortativity is not just restricted to vertex degree, but can also be applied to compare

other categorical attributes of adjacent vertices in the graph11. In this variant, assor-

tativity is useful for studying the so-called mixing patterns, of most relevance in social

networks. Given a set of categories K = (K1, K2, ..., K|K|) and a function fK : V (G)→ K
which assigns categories to vertices, assortativity by K is defined as: [114]12

a(G) =
Tr(e)− ‖e2‖

1− ‖e2‖
,

where e is a matrix whose components eij represent the probability of a randomly (uni-

formly) picked edge (u, v) having categories f(u) = Ki and f(v) = Kj in its endpoints.

In general terms we shall speak of assortative behavior when for certain vertex at-

tribute assortativity is positive, and of disassortative behavior when assortativity is neg-

ative.

2.1.3 Centrality measures of vertices and edges

Centrality measures quantify the relevance of vertices or edges in a graph. This relevance

is usually related to their proximity to other vertices or edges, their utilization for estab-

lishing paths between vertices, or either the consequences of their possible elimination.

In particular, vertex degree is one of the simplest forms of centrality measures. We may

think that a highly connected vertex is an important one; this is not always true though.

Many centrality measures exist. Here we shall only present those ones useful to us:

betweenness, closeness, eigenvector centrality, shell-index (or coreness) and dense-index.

For some of these measures, various definitions or normalizations are possible. We shall

give the one that we consider simpler and more appropriate for our work. For the first

three measures, graph connectedness will be required.

11Observe, however, that both assortativity measures do not coincide. For scalar values, e.g. de-
grees, we measure assortativity by means of Pearson’s correlation coefficient. For categorical attributes,
instead, we use Cohen’s agreement measure.

12This assortativity measure proposed by Newman [114] coincides with Cohen’s agreement mea-
sure [47, 23].
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2.1.3.1 Betweenness

Betweenness was introduced by L. Freeman in 1977 [72] and is one of the more classical

centrality measures. It involves computing the number of minimum paths in the graph

which pass through a vertex. For connected graphs, vertex betweenness if defined as:

cB(vi) =
∑

{vj ,vk}⊂V (G),jk 6=i

L(vj, vk|vi)
L(vj, vk)

,

where L(vj, vk|vi) is the number of minimum paths from vj and vk which pass through vi,

and L(vj, vk) is the number of minimum paths between vj and vk. Betweenness quantifies

vertex utilization in minimum paths connecting other vertices.

In 2002 Girvan et al. proposed a similar betweenness centrality measure for edges,

called edge-betweenness [76].

0
2

4
6

8

Figure 2.4: Betweenness. (Left) Four minimum paths passing through vertex 5. Two
of them (paths from 1 to 7 and from 2 to 7) have alternative minimum paths, and are
weighted by 1/2. The betweenness value of vertex 5 is cB(5) = 3. (Right) Vertices in
the same graph, colored by betweenness.

2.1.3.2 Closeness

In connected graphs, vertex closeness is defined as the inverse of its average distance to

other vertices in the graph [73]:

cC(vi) =
n(G)− 1∑

vj∈V (G),j 6=i d(vi, vj)
.

As a drawback, closeness tends to concentrate on a relatively small range of values when

applied to the vertex set of a graph. [119].
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Figure 2.5: Closeness. (Left) In red, edges in minimum paths departing from vertex
5 towards other vertices. The average distance is 3/2, and thus vertex 5’s closeness is
cC(5) = 2/3. (Right) Vertices in the same graph, colored by closeness.

2.1.3.3 Eigenvector centrality

This centrality measure is based upon spectral decomposition of the adjacency matrix

of a connected graph. As all the coefficients in the adjacency matrix are non-negative

and the matrix is irreducible, the Perron-Frobenius theorem assures that A(G)’s spectral

radius is an eigenvalue with a unique associated eigenvector, whose components are all

positive [143]; this eigenvector will be denoted as v1(G). Eigenvector centrality of vertex

vi is thus defined as the i-th component in vector v1(G), divided by the latter’s infinity

norm:

cE(vi) =
v1
i (G)

maxj {v1
j (G)}

.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2.6: Eigenvector centrality. Vertices in a graph, colored by eigenvector centrality.

The different eigenvectors of an adjacency matrix are strongly related to the dynamics

of random walks and diffusion processes on the graph [143]. In particular, those eigen-

vectors associated to the largest eigenvalues are the most determinant ones. Because of

this, they get to capture the relevance of vertices.
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2.1.3.4 Shell index

The centrality measure to which we refer as shell index or coreness is based on the k-core

decomposition of a graph, which we introduce now.

The k-core decomposition was introduced by Seidman in 1983 [141]. It arranges

the vertices into layers called cores, such that the more central layers (which have a

bigger k value) contain vertices with a larger number of connections between them, as

compared with the connections in more peripheral layers. In effect, a k-core is defined as

a maximal induced subgraph such that each of its vertices connects to at least k vertices

in the subgraph. This is:

Ck(G) = G[S]⇔ {∀v ∈ V (G[S]) : dG[S](v) ≥ k} ∧ S is maximal with this property ,

where we recall that v’s degree is measured in the subgraph of G induced by S.

We shall say that a vertex v has shell index cK(v) = k when it belongs to the k-core,

whereas it does not belong to the (k + 1)-core.

The maximal value of k in a graph G for which the k-core of G is non-empty is a

graph invariant, and is called core number. We shall denote it by kmax(G).

The different k-cores in a graph can be obtained by recursively removing vertices of

degree less than k. Based on this procedure, the algorithm by Batagelj and Zaversnik [18]

finds the k-core decomposition of a connected graph in a time O(e(G)).

2.1.3.5 Dense index

k-dense decomposition of a graph is analogous to k-core decomposition, but it focuses

on edges instead of vertices. While in the k-core decomposition we observed the vertex

degree in the induced subgraph, here we shall observe edge multiplicity instead. Edge

multiplicity, m(e), is defined as the number of vertices which simultaneously belong to

the neighborhoods of the edge endpoints. A particular difference is that, as the k-dense

is obtained from an edge set, it is indeed a subgraph of the original one, but it is not

necessarily an induced subgraph. The k-dense of a graph G, Dk(G) (for k ≥ 2) is defined

as [140]:

E(Dk(G)) = S ⇔ {∀e ∈ S : mG−S̄(e) ≥ k − 2} ∧ S is maximal with this property

V (Dk(G)) = {u ∈ V (G)/∃v ∈ V (G) : uv ∈ E(Dk(G))} .

This is, we first build the maximal set of edges with multiplicity at least k− 2 in the

subgraph, E(Dk(G)). Then we define the set of vertices as formed by those on which

some of the edges in E(Dk(G)) incide.
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Figure 2.7: k-core decomposition. k-core decomposition of a graph containing 16 vertices.
Those vertices in red have shell index 3, i.e., they have at least 3 connections between
them. Vertices 5, 7 and 8 (green) have shell index 2 (observe that, while vertex 8 has 3
connections, when removing vertex 7 one of them is lost, and thus it cannot access the
3-core). Vertices in pink have shell index 1. Observe that the 3-core is disconnected,
whereas the 2-core and the 1-core have a unique connected component.

The k-dense decomposition of a graph can be obtained by recursively removing edges

with multiplicity less than k − 2, for increasing values of k starting from k = 2.

When an edge e belongs to some k-dense but it does not belong to the (k+ 1)-dense,

we shall say that e has dense index k, and we shall denote it by cD(e) = k.

The maximal dense index among all the vertices in a graph G is a graph invariant

which we call dense number. We denote it by kdensemax (G).

2.1.4 Summary of notation

n(G) order of graph G

e(G) size of graph G

V (G) vertex set of graph G

E(G) edge set of graph G

A(G) adjacency matrix of graph G

aij (i, j)-th element of the adjacency matrix
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d(v) degree of vertex v

N (v) neighborhood of v

d−(v) internal degree of vertex v (directed graphs)

d+(v) external degree of vertex v (directed graphs)

λ(u, v) maximum number of vertex-disjoint vertices between u and v

λ′(u, v) maximum number of edge-disjoint vertices between u and v

d(u, v) distance between u and v

G[T ] subgraph of G induced by T ⊂ V (G)

c(G) number of connected components of G

[S, S] edge-cut

|[S, S]| capacity of an edge-cut

κ(u, v) minimum cut between u and v

κ′(u, v) edge-connectivity between u and v

κ(G) connectivity of graph G

κ′(G) edge-connectivity of graph G

diam(G) diameter of graph G

cc(v) clustering coefficient of vertex v

cc(G) global clustering coefficient of graph G

cc(G) average clustering coefficient of graph G

pv(k) degree distribution

d, dk average degree, k-th moment of the degree distribution

σ2(d) variance of the degree distribution

dmax maximum degree

puv(k
′|k) neighbor degree distribution of vertices with degree k

knn(k) average degree of neighbors of vertices with degree k

a(G) degree assortativity of graph G

cB(v) betweenness of vertex v

cC(v) closeness of vertex v

cE(v) eigenvector centrality of vertex v

cK(v) shell index of vertex v

Ck(G) k-core of graph G

kmax(G) core number of graph G

cD(e) dense index of edge e

Dk(G) k-dense of graph G

kdensemax (G) dense number of graph G

Table 2.1: Summary of Graph Theory notation used throughout this work. We use West’s
book [156] as reference.
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9

Figure 2.8: k-dense decomposition. k-dense decomposition of the same graph as in the
previous figure. Edges in red have dense index 4; this implies that each of them takes
part into at least two triangles in the 4-dense. Edges in yellow belong to the 3-dense,
and all of them take part into at least one triangle. Edges in cyan have dense index 2.
The vertices take the color of the densest of the edges which incide on them, according
to the definition. Observe that the edge 10↔ 14 has dense index 2 because, even though
it connects vertices in the 3-dense, it does not take part in any triangle.

2.2 Theoretical and experimental results in complex

networks

In this section we shall recall some of the most important theoretical and experimen-

tal results in the area of Complex Networks. Results related to model building will

be discussed in the next Section. Here, we shall illustrate the results by using social,

technological and biological networks (metabolic and protein interaction networks, in

particular). We shall set aside other important network types, as semantic networks

or neuronal and ecological networks (which are both biological networks). For further

discussion on these results, we suggest referring to [115, 35, 58].
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We shall start our review in 1999, year in which the discovery was made that many

complex network graphs approach a power-law 13,14, i.e., that some of their attributes

follow a law of the form f(x) ∝ x−α. Among these works we mention:

• The work by the Faloutsos brothers [66], who observed a power-law in the degree

distribution of the Internet graph. They analyzed some Internet maps containing

information on about 4000 routers and their connections, and they showed that

the number of connections of the routers could be adjusted by a power-law with an

exponent α between 2.0 and 2.5, depending on the exploration. They also showed

that the power-law in the degree distribution cause power-laws in other parameters,

as the distance distribution between pairs of routers and the distance distribution

from a particular router to other routers in the network.

• The works by Barabási and Albert [3, 14] confirmed the presence of power-laws in:

– A portion of the Web graph, containing 325729 vertices representing web

documents, which are connected by hyperlinks. As the hyperlinks are bidi-

rectional, the Web is conveniently modeled as a directed graph. Albert and

Barabási showed that both the internal degree, d−, as the external degree,

d+, follow a power-law with exponents 2.1 and 2.45, respectively.

– An actor network formed by 212250 actors, in which the edges between actors

represent a co-participation in some film. Here they found a power-law with

exponent 2.3 in the distribution of the number of actors who co-participated

with some particular actor.

– The power distribution network of the United States, containing 4941 power

stations and substations, connected by high voltage power lines. The number

of power lines connected to some particular node can be adjusted to a power-

law with exponent 4.

In [3] Albert and Barabási also showed that the average distance between documents

in the Web graph (i.e., the average number of clicks necessary to get from one document

to another) in 1999 was 18.59, and it linearly followed the logarithm of the number

of documents. This discovery renewed the interest on the small-world networks which

had been studied by Milgram’s experiments in the 60es. In that same year, Watts

and Strogatz observed the small-world property in the actor network and in a protein

13Whereas the discussions on scale-free distributions began at this time, the subject had already been
addressed by Price, who discovered a power-law in the scientific collaboration network in 1976 [128].

14An analysis of power-law distributions is made in Appendix A of the present work.
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Figure 2.9: Actor network. (Left) Visualization of the neighborhood for a particular
actor in the actor network (Generated with Gephi). The actor is colored in violet in the
center of the picture. (Right) Relative frequencies of the clustering coefficients of the
vertices, grouped into linear bins. The global clustering coefficient of the network if 0.78.

interaction network15.

These two phenomena (the scale-free behavior of the degree distribution and the

small-world property) have been found in many complex networks, and have some im-

portant consequences on their dynamics:

• In 2000 Jeons et al. [90] analyzed the structure of protein interaction networks and,

besides finding power-laws, they observed an structure formed by hubs (i.e., high-

degree vertices) serving as connectors for small-degree vertices. They concluded

that these networks are robust under random remotion of the nodes (and this

robustness is manifested as, e.g., stability of the diameter, the average distance and

connectivity), whereas they could be seriously affected by a planned or intentional

attack of one or more hubs. This behavior of scale-free networks, which Doyle et

al. [61] called as robust-yet-fragile, was also found in the Web and the Internet [4,

48].

• In 2001 Pastor-Satorras and Vespignani studied information diffusion and epidemic

15In live organisms, many biochemical processes take place which perform certain functions or satisfy
some needs. Each of these processes is governed by the presence of some proteins. In this context, we
say that two proteins interact when they take part in the same biochemical process.



2.2. THEORETICAL AND EXPERIMENTAL RESULTS IN COMPLEX NETWORKS45

spreading16 in scale-free networks, and they observed that these processes profit

from a design which optimizes information flow [126]. Using a thermodynamic

approach, they showed that infection propagation does not have a critical point,

and that viruses may manage to spread, no matter how small their spreading rate

is. These results can also be applied to rumor and information propagation in

social networks.
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Figure 2.10: Protein interaction network of S. Cerevisiae. In the left, a visualization of
the protein interaction network of the bacteria S. Cerevisiae, generated using the LaNet-
vi software. The different layers in the visualization correspond to the k-cores of the
graph. The left scale represents the vertex degree, and the right scale identifies the shell
index. In the right, the knn(k) as a function of k shows disassortative behavior, which
is a characteristic of these networks in which some proteins serve as hubs, interacting
with some poorly connected proteins [90]. The degree assortativity of the network is
-0.156 [114].

Scale-free networks have been the object of many theoretical studies, and tools from

Statistical Mechanics have been used in order to study their properties in the thermo-

dynamic limit [2, 59]. These results have been used as feedback for adjusting the models

which were being developed.

The Internet topology has also been widely studied. The constant evolution of the

network and some technical and security issues make it almost impossible to get a com-

plete snapshot of it. Because of this, several projects have been developed to faithfully

16Both phenomena are analogous to diffusion processes in physical systems.
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explore the Internet, as CAIDA [34], DIMES [56] and RouteViews [150]. We mention

the following results:

• Alvarez-Hamelin et al. studied the k-core decomposition of the Internet graph

both at the router-level and at the Autonomous System level, and they observed

a power-law in the size distribution of the k-cores [7]. They also showed that the

vertex degree and shell index are positively correlated: the central routers in the

network from the k-core perspective are usually the highest degree ones [8].

• Pastor-Satorras et al. found disassortative behavior by vertex degree [125], and

they adjusted the knn(k) to a power-law with exponent α ≈ 0.5. In other words,

this shows that the central nodes in the network prefer to connect with peripheral

nodes and vice versa: peripheral nodes prefer to connect to central nodes, according

to the preferential attachment hypothesis of Barabási.

• The k-cores have also been related to connectivity. In 1991 Luczak proved that

in Erdös-Rényi graphs the k-cores are k-connected with high probability [107].

Experiments performed over the Internet also showed that the k-cores of the In-

ternet graph are usually k-connected [37, 7]. In Chapter 4 of the present work we

study the k-edge-connectivity of the k-cores of Internet graphs at the Autonomous

System level.

In the area of social networks many studies have focused on mixing patterns, i.e.,

the correlations between certain attributes of the members (age, sex, profession, degree

in the network graph, etc.) and their connections. An assortative behavior has been

frequently found: popular people (i.e., those with many connections) tend to connect to

other popular individuals in the network. This issue has been observed in collaboration

networks, in the actor network and in an e-mail exchange network [114], among others.

Another aspect which became relevant is the study and discovery of community struc-

ture in social networks. This term is used to design the organization of members into

affinity groups. The members of these groups hold many connections inside it, but scarce

connections towards members in other groups. The discovery of community structure

may provide information on the constitution of friendship, working or ideologic groups

and may thus help to extract valuable information from the network. We shall discuss

this topic in Chapter 3 of the present work.

Approaching the Web as a social network of information flow made it possible to

apply complex networks tools to the document retrieval problem. The powerful Google

engine, called PageRank, uses a variant of the eigenvector centrality to classify web

documents according to their hyperlinks to other documents [122]. PageRank regularly
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computes the eigenvector associated to the highest eigenvalue of the adjacency matrix

of the whole Web: an sparse matrix containing millions of rows and columns.

The relation between scale-free distributions and self-similar processes is quite con-

troversial. Song et al. developed a frame for analyzing the structure of complex networks

in search for self-similarity, which they verified in several networks [147]. According to

this approach, scale-free distributions would be just one aspect of the self-similar nature

of many systems. Other works have related self-similarity to degree assortativity, stat-

ing that fractal networks have a disassortative behavior, whereas non-fractal ones would

have an assortative behavior [159]. Johnson et al. [91] showed that degree disassortativity

is the expected behavior in those systems which are guided by entropy-maximization.

Assortative behavior would thus be restricted to those systems with a strong human

component in their interactions, as is the case of social networks. We also mention that,

relating the use of the Pearson correlation coefficient as degree assortativity measure,

a recent work by Hofstad would show that this is not an appropriate measure in large

scale-free networks [105].

Lastly, Ravasz and Barábasi, among others, have studied the hierarchical structure of

complex networks and they maintain that it can explain the coexistence of high clustering

coefficients and power-laws [131]. The hierarchical organization has also been discussed

in the context of community discovery.

2.3 Models of complex networks

Network models are intended to reproduce some of the patterns observed in complex

networks, and they are used for predicting network behavior or evolution. These models

are usually probabilistic (nondeterministic) and are studied by Random Graph Theory.

We shall start this section introducing the concept of random graph. Then, we shall give a

brief account on the evolution of network modeling since 1960. Finally, in the subsequent

subsections we shall describe some of the best known complex network models.

We define a random graph with n vertices17, Gn, as a probability space (Ω,F , P ) in

which Ω is a set of graphs with n vertices, each of them having a certain probability of

being extracted. An instance of a random graph is thus a sample from this probability

space, and the invariants of a random graph can be thought as random variables in the

same space. Within this framework, the results of Graph Theory are usually expressed

as:

17In more general terms, a random graph Gp1,p2,...,ps may have several parameters p1, p2, ..., ps, one
of which is usually the size, n(G). In our definition we only mention this parameter, as it is essential
for introducing the notion of high probability.
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1. Probability distributions of the invariants, as the diameter, the vertex degree or the

clustering coefficient, of a random graph Gn. We shall say that an invariant f(Gn)

asymptotically converges to some h(n) when:

lim
n→∞

P [(1− ε)h(n) < f(Gn) < (1 + ε)h(n)] = 1, ∀ε > 0 .

2. Properties expected with high probability. We shall say that Gn has a certain prop-

erty P with high probability when the probability of Gn having that property tends

to 1 as n→∞:

lim
n→∞

P [Gn ∈ P ] = 1 .

Whenever we say that a random graph model has some property P we will mean

that it has that property with high probability.

In order to expand the study of random graphs, we suggest consulting [27, 28].

The concept of random graph was introduced by P. Erdös and A. Rényi in 1959

in their Erdös-Rényi model [64]18, which generates graphs with poissonian degree dis-

tributions and a clustering coefficient of zero (recall that we speak in terms of high

probability).

This simple model was extended in the 70es in order to generate random graphs

with different degree distributions. New models arose, as the random graphs with given

expected degrees [43] and the configuration model (or random graph with specified de-

gree distribution) [21]. These models were capable of generating graphs with power-law

distributions, but none of them could account for their origin in terms of simple rules.

Near the end of the 80es an interest grew in modeling the Internet topology which

gave rise to many topology generators, as Waxman’s model (1988) [154] introducing

a geographical variable, and the hierarchical models by Doar (1996) [57] and Zegura

(1997) [161]. Towards the end of the 90es, the results of the explorations of the Internet

and the Web showed a scale-free behavior. In order to account for it, Barabási and Albert

proposed a model based on preferential attachment which reproduced a power-law in the

degree distribution [14]. Fabrikant et al. (2002) [65] also managed to generate graphs

with scale-free distributions by using a process of resource-constrained optimization.

In the area of social networks, the small-world behavior was largely studied. The

model proposed by Watts and Strogatz in 1998 [153] starts with a ring topology and

18Take into account that for many authors the notion of random graph referred to the Erdös-Rényi
graphs, in particular some decades ago. This explains the names of models like the generalized random
graph or the random graph with a specified degree distribution, as these models were understood as
extensions of the original random graph model. Nowadays, the concept is much richer, as our definition
shows.
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uses a random rewiring procedure to generate a small-world network, i.e., a network

with short average distances and high clustering coefficients. The degree distributions

are poissonian though. Also Kleinberg (2000) [92] reproduced the small-world behavior

by adding some long-range connections into a lattice.

Degree assortativity has proved to be a difficult property for network models; most of

them generate networks with degree assortativity zero. Some exceptions are the Bianconi

and Barabási model, which generates networks with assortative behavior [22] and has

been used for modeling the Web, and Catanzaro et al.’s model [39], which is capable of

generating networks with disassortative behavior.

Lastly, we shall mention some models related to the hierarchical organization and the

community structure. The Community Guided Attachment (CGA) model by Leskovec

et al. (2005) [102] studied the emergence of power-laws in the context of a hierarchical

structure.

The models that generate community structure generally do not account for it, but

just aim at reproducing it. They are frequently used as benchmarks for the community

discovery algorithms. Among these models, we mention the relaxed caveman model [152],

the planted l-partition model [51], the hierarchical model by Clauset-Moore-Newman

(CMN) [44] and the Lancichinetti-Fortunato-Radicchi (LFR) model [97]. All of them

constitute variants of the generalized random graphs and the configuration model, just

adding some information on the hierarchical and/or community structure.

2.3.1 The Erdös-Rényi model

The simplest of the random graph models was proposed by Erdös and Rényi towards

1960 [64]. This model generates graphs with n vertices, in which any pair of nodes chosen

uniformly at random is connected with some fixed probability p.

The Erdös-Rényi random graphs (ER) Gnp fulfill the following properties:

• The graph size follows a binomial distribution:

P[e(Gnp) = M ] =

(
N

M

)
pM(1− p)N−M , 0 ≤M ≤ N

in which N =
(
n
2

)
• The expected graph size is E[e(Gnp)] = Np.

• The vertex degree follows a binomial distribution:

P[dGnp(v) = k] =

(
n− 1

k

)
pk(1− p)n−1−k .
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• The expected degree is E[dGnp(v)] = (n− 1)p.

• The expected clustering coefficient for a vertex is E[ccGnp(v)] = p.

• Degree assortativity is asymptotic to 0 with n→∞.

• The diameter is asymptotic to lnn/ ln(pn) with n→∞ [42].

• The graph is connected with high probability.

• Edge-connectivity is asymptotic to (n− 1)p with n→∞.

Figure 2.11: Erdös-Rényi model. Visualization. Instance of an Erdös-Rényi random
graph with 100 vertices and expected degree 5.

It is usual to study the behavior of the Erdös-Rényi random graphs as n→∞ while

keeping np constant, so as to conserve the expected vertex degree. Under this restriction,

as n→∞ it holds that:

• Degree distribution converges to a Poisson distribution with mean np.

• The vertex clustering coefficient and the global clustering coefficient are asymptotic

to 0.

• The graph is disconnected (the diameter tends to infinity).
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The Erdös-Rényi graphs are not appropriate for modeling complex networks, as they

have degree distributions with an exponential fall off (instead of a heavy tail) and short

clustering coefficients. Also, the absence of correlations produces a degree assortativity

close to zero.
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Figure 2.12: Erdös-Rényi model. Instance of a random graph generated with an Erdös-
Rényi model, with p = 0.00025 and n = 20000. Its average degree is d = 5.00, and its
maximum degree is dmax = 16. (Left) Relative frequency of the vertex degrees, compared
with a binomial distribution with the same expected degree. (Right) Correlation between
adjacent vertex degrees. Dots represent the mean of the neighbors’ degrees, knn, as a
function of vertex degree. The slope of the regression line (which equals the degree
assortativity) is null. The global clustering coefficient is also zero.

2.3.2 Internet models

Next, we shall describe 3 models used for studying the Internet topology: Waxman’s

model, the Barabási-Albert model and the FKP model.

2.3.2.1 Waxman’s model

After performing some observations on the Internet, Waxman suggested two hypothesis

regarding how the routers connect among them. According to Waxman’s paper from

1988 [154]:

1. Routers in the Internet are geographically distributed, and this distribution affects

the way in which they are connected.
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2. As a consequence of a resource optimization process, connections are more likely

to occur between close routers than between distant ones.

Considering these two ideas, Waxman introduced a change in the Erdös-Rényi model

in order to make the connection probability distance-dependent. In Waxman’s model,

n vertices are randomly positioned in a square of side L. Then, each pair of vertices

(vi, vj) is connected with a probability pij which is exponential on the euclidean distance

between them, which we denote as d(vi, vj):

pij = βe
−d(vi,vj)

αL , 0 < α, β ≤ 1 .

The β constant determines the expected degree of the model. The α constant regulates

the exponential fall off, and thus it determines the probability of establishing long-

distance connections between the vertices.

This model was the first one that intended to reproduce the Internet topology.

Nonetheless, it shares many of the limitations of its predecesor: the vertex degree distri-

butions still have an exponential fall off.
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Figure 2.13: Waxman’s model. Visualization. Instance of a graph generated with Wax-
man’s model, with α = 0.22 and β = 0.30, with n = 200 vertices and 529 edges. The
average degree is d = 5.29.
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Figure 2.14: Waxman’s model. Instance of a graph generated with Waxman’s model,
with α = 0.15 and β = 0.0008, containing n = 20000 vertices. The average degree is
d = 6 and the maximum degree is dmax = 14. The global clustering coefficient is almost
zero. The degree assortativity is 0.043. The average distance is 8.59, and the diameter
is 19.

2.3.2.2 The Barabási-Albert model

When Faloutsos et al. showed that the degree distributions in the Internet followed

a power-law [66], many models tried not only to reproduce this property, but also to

explain it. The first of them was the model by Barabási and Albert (BA) (1999) [14].

In their work, Barabási and Albert discovered the presence of power-laws in the

degree distributions of different complex networks, as the Web, a cocitation network,

and the power distribution network of the United States. They also showed that the

previous models (like the Erdös-Rényi and the Watts-Strogatz models) could not capture

this scale-free property of the degree distributions. Then, they proposed a new model

in order to obtain power-laws. This model was based upon two hypotheses: network

growth and the preferential attachment mechanism.

Growth. The first of the two hypotheses was related to the dynamical evolution of

networks. As time evolves, networks incorporate new vertices. The authors pointed out

that the previous models failed partly because they considered a fixed initial number of

vertices.

Preferential attachment. According to this hypothesis, when a new vertex ap-

pears, it prefers to connect towards other well-connected vertices (i.e., high-degree ones).
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Barabási and Albert used the Web as example: The Web contains relatively few famous

sites, and when new pages appear they usually contain links towards them. With this

mechanism the authors applied an idea which was in fact present since many years. We

mention for example Price’s work on scientific collaborations from 1976 [128], and the

social aphorism known as the-rich-get-richer.

Under the BA (Barabási-Albert) model, a network initially contains m0 vertices con-

nected among them. We shall call this initial graph as G0. This graph evolves through

discrete time, and one vertex is added in each time step. At time t, given the graph

Gt−1 = (Vt−1, Et−1), a vertex vt is added in order to obtain a graph Gt. This vertex

connects to a number m ≤ m0 of vertices in Vt−1, which are chosen with a probability

distribution in which the probability of choosing vj is proportional to its degree:

p(v(j)) =
dGt−1(j)∑

k≤t−1 dGt−1(vk)
, j ≤ t− 1 .

From this simple rule, and after some time, the degree distribution arrives at a sta-

tionary state in which it is scale-free. This behavior was empirically showed by Barabási

and Albert and later proved by mean-field approaches based on rate equations [15, 93].

The BA model description in [14] is somewhat inaccurate, as observed by Bollobás

et al. [30]. In particular, the layout of the initial m0 vertices (i.e., their connections)

is not described in the model. In each step, when choosing the m connections, the

joint distribution of them is not specified, but only the marginal distribution of each

connection. Nonetheless, the general scale-free properties of the model do not seem to

depend upon these choices.

The network graphs generated under the BA model present the following properties

in the stationary state (n→∞):

• The mean degree d is asymptotic to 2m.

• The global clustering coefficient is asymptotic to m−1
8n(G)

ln(n(G))2 [28].

• The degree distribution converges to a power-law with exponent α = 3.

• The average distances are those of small-world networks (i.e., they are shorter than

ln(n(G)) with high probability) [49].

• The diameter is asymptotic to ln(n(G))
ln ln(n(G))

for m ≥ 2 [29].

• The degree assortativity is asymptotic to 0.
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• The graph is connected.

Even though the original BA model tends to generate power-laws with exponent α =

3, a simple adjustment makes it possible to get power-laws with exponents α ≥ 2 [60].

In conclusion, this model reproduces the power-laws which are present in many com-

plex networks, but it does not wholly reproduce the small-world phenomenon: the net-

works generated under the BA model have small diameters but their clustering coeffi-

cients are too short.

2.3.2.3 The FKP model

The model by Fabrikant et al. (FKP) [65] stands out for having applied the Highly

Optimized Tolerance (HOT) mechanism proposed by Carlson and Doyle [36] in 1999 for

obtaining power-laws in the degree distribution. Let us recall that the HOT mechanism

suggested that power-laws in complex systems emerged as the result of resource opti-

mization. Following this idea, Fabrikant et al. proposed an evolutive model in which the

vertices are added dynamically and are randomly positioned in space (in a similar way

as in Waxman’s model). But the connections between the vertices are not determined

by a probability distribution. When the i-th vertex is added, just a single connection is

established, which is determined as the one that minimizes a cost function, Ψ(vi, vj):

Ψ(vi, vj) = α(n(G))d(vi, vj) + φ(vj), j ≤ i− 1 ,

in which:

• α(n(G)) is a function of the final number of vertices. Its role is to determine the

relative weight of each of the two terms in the formula.

• d(vi, vj) represents the euclidean distance between vi and vj.

• φ(vj) is the inverse of some centrality measure on the vertices. E.g., it might be

the inverse of the betweenness, or the closeness.

A connection is established between vi and the vertex that minimizes this cost.

The minimization of the functional Ψ(vi, vj) defines a trade-off between two aspects:

the economic cost of establishing the link (measured under the euclidean distance) and its

utility, measured as the vertex centrality in the network. The FKP model successfully

reproduces a power-law in the degree distribution, but it generates graphs with core

number 1 (their maximal non-empty k-core is the 1-core), which have a tree structure

and whose global clustering coefficient is zero. A method extension proposed by Alvarez-

Hamelin and Schabanel solves this last limitation [9].
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Figure 2.15: Barabási-Albert model. Instance of a graph generated with a Barabási-
Albert model (BA) with m = 3 and n = 20000 vertices. The average degree is d = 6
and the maximum degree is dmax = 222. Upwards, to the left, a visualization of the
graph after adding the first 200 vertices. To the right, a log-histogram of the degree
distribution of the vertices, adjusted to a power-law with exponent α = 3.10, by the
max-likelihood method. Downwards to the right, a histogram of the vertex clustering
coefficients, grouped with a linear binning. To the left, the correlation between adjacent
vertex degrees. The dots represent the mean value of the neighbors’ degrees, knn, as a
function of vertex degree. The slope of the regression line (i.e., the assortativity of the
graph) is −0.004. The clustering coefficient is almost zero. The average distance is 4.71
and the diameter is 7.
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Figure 2.16: FKP model. Instance of a graph generated under the FKP model, with
α = 25 and n = 20000 vertices. Closeness has been used as centrality measure. The
mean degree is d = 2, the maximum degree is dmax = 229 and the global clustering
coefficient is zero. The average distance is 6.70 and the diameter is 12. To the left, a
graph visualization after connecting the first 200 vertices, in which the vertex position
represents its geographical location. To the right, a log-histogram of the degree distribu-
tion, adjusted by a power-law for k ≥ 2, with exponent α = 1.67, by the max-likelihood
method.

The network graphs generated under the FKP model have the following properties:

• For 4 ≤ α(n(G)) <
√
n(G) the degre distribution is asymptotic to a power-law

with exponent bigger than 1 as n → ∞ (the authors prove this when using the

graph distance between the vertices and a fixed vertex as centrality measure).

• The global clustering coefficient is zero.

• The mean degree is asymptotic to 2.

2.3.3 Generalizations of the Erdös-Rényi model

The original Erdös-Rényi model generates network graphs with poissonian degree distri-

butions, in which vertex degrees have scarse dispersion. These graphs are usually called

as homogeneous. Some proposals were made for adapting the ER model in order to

obtain heterogeneous graphs and, in particular, graphs with scale-free distributions. We
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shall now describe two of them: the configuration model and the random graph with

specified expected degrees.

In the configuration model [21] a specific degree sequence is guaranteed. According

to the prescribed degrees d(vi), each vertex i is connected to a number of d(vi) stubs

(which can be thought as edge endpoints). From the set of 2e(G) stubs, two of them are

randomly chosen and connected19. The process is repeated (without reposition of the

stubs) until no stubs remain. Necessarily, when the process ends, each vertex will have

the specified degree for it. As one of its properties, this model obtains an equiprobable

sample from the set of all non-isomorphic graphs with some fixed degree distribution.

In the random graph model with specified expected degrees [43], each pair of vertices

vi and vj is connected with a probability pij =
DiDj∑
iDi

, so that the expected degree for

some vertex i is E[d(vi)] = Di.

Figure 2.17: Configuration model and random graph model with specified expected degrees.
In the configuration model (Left) each vertex connects to a number of stubs equal to its
prescribed degree. The stubs are chosen by pairs, in a random fashion, and they are
connected until no stub remains. In the random graphs with specified expected degrees
(Right) the probability of connecting two vertices vi and vj is pij =

DiDj∑
iDi

, where Di is

the expected degree for vertex i.

In both models, the introduction of scale-free distributions also reproduces part of

the small-world phenomenon: the expected average distance, for values of α between 2

and 3, tends asymptotically to 2log(log(n(G)))
log(α−2)−1 as n→∞, and the diameter is in the order

of n(G). But none of them reproduces the high clustering coefficients of small-world

networks [133, 43].

19Each stub is chosen with uniform distribution from among the remaining ones. The configuration
model may generate graphs with loops and multiedges.
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2.3.4 Models of Social Networks

We shall now describe the characteristics of the Watts-Strogatz model. This model was

the first to fully reproduce the small-world behavior. We shall also introduce some of

the models used to generate community structure: the planted l-partition model and the

Lancichinetti-Fortunato-Radicchi (LFR) model.

2.3.4.1 The Watts-Strogatz model

Many complex networks (specially the social ones) present small-world behavior. This

behavior can be described as the presence of small average distances between vertices

and high clustering coefficients.

Watts and Strogatz tried to reproduce this problem in a graph model with fixed

average degree [153]. In the Erdös-Rényi model we showed that it was not possible. If we

kept the np product fixed, when n was large enough we got a disconnected network an and

clustering coefficient tending to zero. The authors compare this situation against that of

lattices, in which the clustering coefficient is high but the average distance may be very

high too. Looking for a half-way point between these two cases, they proposed a model

whose initial structure is a ring in which vertices only connect with all their neighbors at

distance at most k (in this way, a high clustering coefficient is obtained) and a rewiring

procedure is performed in which the edges uv are removed with some probability p,

and new edges uw are set with a randomly chosen vertex w. This rewiring procedure

does not change the total number of edges in the graph, and thus the average degree is

conserved. Increasing the probability p shortens the average distance but also the global

clustering coefficient. But, for a wide range of values of p (between n−1 � p � 1) the

model obtains graphs with small average distances and a high clustering coefficient.

The random graphs obtained with the Watts-Strogatz model have the following prop-

erties [17]:

• The size of the graph is kn.

• For n→∞ and p→ 1, the degree distribution converges to a Poisson distribution

with mean k.

• In the region n−1 � p� 1 the expected clustering coefficient is 3(k−1)
2(2k−1)

.

• In the region n−1 � p� 1 the expected distance between vertices is lnn/ ln k.

Although the degree distribution of the graphs generated under the Watts-Strogatz

model is still poissonian, its importance lies in being the first to fully reproduce the

small-world behavior.
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Figure 2.19: Watts-Strogatz model. Instance of a graph generated under a Watts-Strogatz
model with p = 0.1, k = 3 and n = 20000 vertices. The average degree is d = 6 and the
maximum degree is dmax = 12. (Left) Degree distribution of the graph vertices. (Center)
Relative frequencies of the vertex clustering coefficients, grouped with a linear binning.
(Right) Correlation between the degrees of adjacent vertices. Dots represent the average
value of the neighbors’ degrees, knn, as a function of degree. The slope of the regression
line (i.e., the degree assortativity of the graph) is 0.004. The global clustering coefficient
of the graph is 0.302. The average distance is 7.58 and the diameter is 12.

Figure 2.18: Watts-Strogatz model. Visualization. Instance of a graph generated under
a Watts-Strogatz model with p = 0.2, k = 3 and n = 30 vertices. The graph has 90
edges and average degree d = 6.
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2.3.4.2 The planted l-partition model

The planted l-partition model was proposed by Condon and Karp in 2001 [51] in the

context of data mining, as a benchmark for the clustering task.

This model builds a graph Gn with n vertices grouped into l communities, all of them

equally-sized, which form a partition of the vertex set. After this initial assignment, each

pair of vertices (u, v) is considered, and they are connected with some probability pi if

they belong to the same community, and with a different probability po < pi if they

belong to different communities. In this way, vertices tend to be more connected inside

their communities than towards the outside.

The graphs obtained under this model have homogeneous vertex degrees, with ex-

pected degree E[d] = pi
(
n
l
− 1
)

+ po
n(l−1)

l
and scarse dispersion.

The Girvan-Newman (GN) benchmark [76], with n = 128 and l = 4, is a particular

case of the planted l-partition model, in which the probabilities pi and po are chosen so

that the expected degree of the vertices is E[d(v)] = 16, which determines the relation

31pi + 96po = 16, po < pi .

2.3.4.3 The LFR model

This model proposed by Lancichinetti, Fortunato and Radicchi in 2008 [97] generates

graphs with heterogeneous distributions both in the vertex degrees as in the community

sizes. It is adjusted by a series of parameters20:

• n, the size of the graph, n(G).

• γ, the exponent of the power-law for the vertex degree distribution.

• d̄, the average degree for the power-law.

• dmax, the maximum vertex degree.

• β, the exponent of the power-law for the community size distribution21.

• smin, the minimum size of a community.

• smax, the maximum size of a community.

20We do not describe here the two parameters related to the definition of overlappings between
communities.

21The authors define the community size as the sum of the vertex degrees.
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Figure 2.20: Planted l-partition model. Instance of a graph generated under the planted
l-partition model, with 120 vertices organized into 6 communities. The connection prob-
abilities inside and outside the communities are 0.4 and 0.02 respectively. The visual-
ization was generated with the LaNet-vi software, using the k-dense decomposition of
the graph. The scale on the right represents the dense index of the vertices. Vertices
in the same community have consecutive numbers, so that a vertex vi belongs to the
community d i

20
e.

• µ, to so-called mixing parameter, which specifies the ratio of the external connec-

tions (towards other communities) of the vertices to their degree.

• C, a desired value for the global clustering coefficient.

The graph is built by performing the following steps:

1. Each vertex is assigned a degree which is taken from a power-law with a cut-off

(d ≤ dmax), with exponent γ and expected degree d̄.

2. The connections are made in the same way as in the configuration model.

3. The community sizes are assigned from a power-law with a cut-off (s ≤ smax), with

exponent β and minimum size smin.
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4. Each vertex is assigned a community at random, under the restriction that after

the inclusion of the vertex, the community should not exceed its assigned size. A

successive refinement procedure is performed until all vertices are assigned to a

community.

5. A rewiring procedure is made in order to adjust the µ values of the vertices to the

specified µ.

6. Finally, a second rewiring is performed in order to adjust the clustering coefficient

to its desired value.
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Figure 2.21: LFR model. Instance of a graph generated under the Lancichinetti-
Fortunato-Radicchi (LFR) model, with the following parameters: n = 256, d̄ =
10, dmax = 50, γ = 2.0, β = 1.0, µ = 0.2, smin = 10, smax = 50, C = 0.4. This instance
has an average degree of 10.84, an average µ of 0.199 and a clustering coefficient of 0.41.
The visualization was produced with the Gephi software. The vertex colors represent
the communities they belong to, and their sizes are proportional to their degree. Below
we show the degree distribution, a histogram of the clustering coefficients of the vertices,
and the knn as a function of vertex degree.



Chapter 3

Discovering Communities in Social

Networks

Community structure arises from the organization of the members of a network into

groups, which we call communities. This organization is typical of many complex net-

works, especially the following ones:

• Social networks. The discovery of community structure makes it possible to study

relations between people, like friendship networks, workgroups and families. The

Internet has reduced the geographical barriers and impulsed the constitution of

virtual communities, in which people interact according to their cultural, political

or ideological affinity. The fact that these communities are founded on the informa-

tion technologies has important consequences. On one side, it offers large volumes

of data for scientific analysis, and it requires efficient processing methods. On the

other side is has a potential economical value: the information on people’s virtual

life helps companies discover their clients and offer their own services efficiently.

But the potential of information technology has also led to serious discussions on

information security and privacy in the virtual world.

• Scientific collaboration networks. Scientists cooperate and work in communities ac-

cording to their research areas. Some of these areas are prone to extense collabora-

tions between scientists. Other areas are quite close instead, and their communities

are smaller [111].

• The Web. Web sites are organized into communities around some topics. These

communities arise spontaneously from the established hyperlinks [68].

• Metabolic networks. This type of biological network represents compounds (i.e.

metabolites) evolution along chemical processes or cycles. In each process, a series

65
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of reactions takes place in which some metabolites react and produce some others.

The network formed by all the metabolites has a community structure in which

metabolites are organized into modules. Each module is correlated with one or

more cycles or processes [86].

• Networks of protein interactions. In live organisms, proteins interact inside cells in

order to take part in some vital processes. Each of these processes performs some

important function for the organism. Discovering community structure in protein

networks is a powerful tool for inferring functionality from structure [41].

• Trophic networks. Discovering communities in ecosystems helps studying trophic

relations among the species. The notion of community is here related to the concept

of ecological compartment [94].

In general terms, the potential of community discovery is related to its capacity for

inferring relations between the network members, predicting their behavior or future

decisions, and understanding the way in which communities arise and evolve.

This chapter presents the following structure: in the first section, we discuss the

notion of community and some of its interpretations; in 3.2 we briefly describe the

state of the art in community discovery; then we stress the need for defining appropriate

comparison metrics. In sections 3.4 and 3.5 we present our contribution to the community

discovery problem in complex networks. This contribution is contained in our articles [33,

20].

3.1 Introduction to the notion of community

An important precedent for community study in complex networks is provided by the

data mining problem known as data clustering. In the data clustering problem, the

elements of a set are to be grouped into clusters according to their properties (which are

usually modeled as coordinates in an n-dimensional space. In this problem, a notion of

distance between elements is usually defined, and the assignment of elements intends to

produce compact clusters, i.e., with small distances between intra-cluster elements.

In the community discovery problem, instead, two main differences arise:

1. The existence of communities is uncertain, so that the community discovery method

is expected to determine if they exist, in addition to how many and which they

are.

2. Vertex assignment into a community in mainly determined by the connections they

have. There is no need to define any distance.
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However, some community discovery methods introduce a distance notion and even

apply traditional data clustering methods, especially those of hierarchical clustering.

Another important precedent is set by the studies of cohesion in social groups. Group

cohesion (i.e., strength of its links) may determine the production of uniform opinion or

influence over its members. From the 40es on, sociologists have introduced concepts as

the cliques [106], the n-cliques [1], the k-plexes [142], the n-clans [109], the n-clubs [109]

and the LS sets [98] for studying group cohesion (see Figure 3.1).

In the area of complex networks, the notion of community began to take shape with

the works by Flake et al. (2000) [68] and Newman and Girvan (2001) [111]:

• Flake et al. [68] proposed the notion of web community as that of a set of vertices

C ⊂ V (G) in which each vertex has more neighbors inside the set than outside of

it. This can be expressed (using the notation introduced in Table 3.2) as:

∀v ∈ C : dinC (v) > doutC (v) .

• Newman analyzed in [111] the concept of community in the context of a scientific

collaboration network. In this network, he observed that the existence of commu-

nities was related to the observation of high clustering coefficients: two scientists,

who had each of them collaborated with a third one, may also have worked together

with high probability.

Since then, the interest on studying community structure has increased year after

year.
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Structure Definition Example

clique of order k
maximally complete subgraph with k ver-
tices.

n-clique
maximal set of vertices such that all of them
lie at a distance at most n. Example: 2-
clique.

k-plex
maximal subgraph with n vertices in which
each vertex is connected to at least n − k
others. Example: 3-plex.

n-clan
n-clique whose induced subgraph has diame-
ter at most n. Example: 2-clan.

n-club
a maximal subgraph of diameter at most n.
Example: 2-club.

LS set
set of vertices such that each vertex has more
connections to others in the same set than to
external vertices.

Table 3.1: Some cohesive structures used for studying social groups.
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3.2 Community discovery methods. State of the Art

We shall now describe the evolution of community discovery and some of its best-known

methods. We shall classify the methods into local and global ones. Global methods

are those in which the communities arise from a problem defined over the whole graph

(e.g., a functional minimization). Local methods are those in which the communities are

based on the local structure and are not affected by the structure of other areas of the

graph. We shall see that community study evolved from global into local methods, and

nowadays the later are preferred. For a deeper comprehension of the state of the art we

suggest consulting the exhaustive survey by Fortunato [70].

We did already mention the seminal work by Newman on scientific collaboration

networks. One year later, Newman developed a divisive hierarchical clustering method

for community discovery based on the edge-betweenness (2002) [76] (see our Subsec-

tion 2.1.3.1). This method is based on the idea that those edges which connect vertices

in the same communities should have a smaller edge-betweenness as compared to that

of edges connecting vertices in different communities. This occurs because the latter

are more probable to take part into minimum paths between those vertices. Thus, the

proposed algorithm computes the edge-betweenness for every edge, and removes them

sequentially, beginning by those of higher edge-betweenness. As the graph disconnects, a

dendrogram is built whose branches represent the connected components. The algorithm

updates the edge-betweenness after each edge removal; this makes it computationally ex-

pensive.

Radicchi et al. (2004) [129] suggested a variation of Newman’s algorithm in which the

edge-betweenness is replaced by the edge-clustering coefficient, which they introduced. In

the same work, they noticed the need for counting on a non-operational definition of com-

munity (i.e., one which were not based just in the result of some algorithm or method).

This would make it possible to evaluate and compare different detection methods, and

even to decide if the structures they find are significant or not. Radicchi et al. suggest

two definitions of community:

1. Community in a strong sense. A set C ⊂ V (G) is a community in a strong sense

if:

∀v ∈ C : dinC (v) > doutC (v) .

2. Community in a weak sense. A set C ⊂ V (G) is a community in a weak sense if:

∑
v∈C

dinC (v) >
∑
v∈C

doutC (v) .
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Symbol Meaning

C = (C1, C2, ..., C|C|) community partition of a network

σ(v) subindex of v’s community

C(v) v’s community

dinC (v) internal degree of v in C

doutC (v) external degree of v in C

µ(v) =
doutC(v)(v)

d(v)
mixing parameter of v

Table 3.2: Community structure notation (Part 1). Quantities dinC (v) and doutC (v) repre-
sent the number of neighbors inside and outside of C, respectively. This notation will
be used both for vertices inside as outside of C.

The notion of community in a strong sense corresponds with that of web community

in Flake et al. [68] and with that of LS set [98]. The method by Radicchi et al. builds a

dendrogram based on the edge-clustering coefficient in the same way as Newman does,

and uses the notions of strong community or weak community as stop criteria.

In the same year, Newman proposed a variation in which the edge weights are com-

puted by performing a random walk and counting the number of times that the edges are

used in each direction [120]. Then, the same hierarchical clustering algorithm is applied,

and the edges with smaller weights are removed first. The discussion on how to cut

the dendrogram (i.e., at which level) led Newman to propose a global functional known

as modularity, which became the standard for measuring the goodness of community

structure and evaluating algorithmic performance for many years.

Modularity. Given a partition of a graph vertex set into communities C = (C1, C2, ..., C|C|),

the modularity of the partition, QG(C), is defined as [120]1.

QG(C) = Tr(e)− ‖e2‖ ,

where e is a matrix whose components eij represent the probability of an edge (u, v)

going from a vertex in community Ci to a vertex in community Cj. These probabilities

1Note the similarity between this expression and that of assortativity by categories (page. 36). Con-
sidering the communities as categories, modularity coincides with assortativity, except for a divisive
factor.
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can be computed as

eij =
|(Ci, Cj)|

2e(G)
=

∑
(u,v)∈Ci×Cj 1{u→ v}

2e(G)
.

From here it follows [45]

QG(C) =
1

2e(G)

∑
(vi,vj)∈V (G)×V (G)

[
Aij −

d(vi)d(vj)

2e(G)

]
1{σ(vi) = σ(vj)} , (3.1)

where 1{σ(vi) = σ(vj)} equals 1 when vi and vj belong to the same community, and 0

otherwise.

The first term of modularity, which is determined by Tr(e), equals the ratio of inter-

nal edges (i.e., edges connecting vertices in the same communities) to the total number

of edges. The second term evaluates the expected ratio of internal edges under a random

graph model with the same vertices, expected degrees and assigned communities2. We

shall thus say that modularity measures the goodness of a community structure by com-

paring its ratio of internal edges to the expected ratio of internal edges if the connections

were made at random.

By assuming that the higher the modularity the better the community structure,

Newman suggested that the best community partition would be the one that maximizes

the Q value. Modularity maximization is a combinatorial optimization problem3 which is

computationally expensive. Brandes et al. proved that it is NP-complete [31]. However,

it can be approached by heuristic methods.

From being an quantitative measure of community structure, modularity turned

into a global functional to be optimized. From among the many modularity maxi-

mization methods, we recall: the greedy algorithm by Clauset-Newman-Moore (CNM,

2004) [45], that of Guimerà et al. based on simulated annealing (2004) [85], the ex-

tremal optimization method by Duch and Arenas (2005) [63], the method by Danon et

al. (2006) [53], Newman’s method of spectral bisection [117], that of Wakita and Tsu-

rumi (2007) [151], the one by Blondel et al. (2008) [24] and the multilevel algorithm by

Noack and Rotta (2009) [121]. Some modularity extensions have also been proposed for

directed graphs [99] and weighted graphs [10].

The limitations found in modularity (which we discuss in Section 3.4), especially its

scaling limit, inspired the research on local methods of community detection. One of

2This null model is built according to the random graph model with specified expected degrees (see
page 58).

3It falls into the category of quadratic assignment problems.
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the first local methods was the Clique Percolation Method (CPM) proposed by Palla et

al. (2005) [123]. This method builds the communities through a percolation process of

cliques of order k. It does not find partitions but covers, in which communities may

overlap.

Raghavan et al. (2007) [130] proposed a local algorithm which finds a partition by

using a label propagation algorithm. First, the algorithm assigns each vertex a different

label. Then, through an iterative process, each vertex replaces its label by the most

frequent one among its neighbors4. The stop criterion consists on verifying that every

vertex has at least as many edges inside its community as outside of it5. Even though

the algorithm might be unstable (in fact, convergence is not guaranteed) in the complex

networks studied by them convergence is verified after a few iterations. In this method,

the idea is implicit that communities play an important role into diffusion processes.

This idea is also present in other percolation and spectral methods. Tibély and Kertész

showed that Raghavan et al.’s process is equivalent to finding a local minimum of a Potts

model Hamiltonian [148].

In 2009 Lancichinetti et al. proposed a local method based in the concept of natural

community [96]. The natural community of a vertex is defined by construction, by

departing from the vertex and adding (and sometimes removing) vertices so as to increase

the community’s (fitness function), defined as: [96]

fL(C) =
din(C)

(din(C) + dout(C))α
, (3.2)

where din(C) and dout(C) represent the sum of the internal and external degrees of the

vertices in C (see this notation in Table 3.3).

The method by Lancichinetti et al. finds graph covers, as each vertex may belong

to more than one natural community. Besides, the fitness function offers a quantitative

measure of the community significance.

Many researchers have analyzed the community sizes of complex networks and have

found heavy-tailed distributions. This phenomenon had been observed in 2002 by

Guimerà et al in the e-mail exchange network [87], by Gleiser and Danon in 2003 in

the jazz network [78] and by Newman in the scientific collaboration network [113] in

2003. In all these cases, the results were obtained by modularity maximization, and

they showed power-laws over a range of about 3 decades in the logarithmic scale, with

exponents between 1.5 and 2. The limited size of those networks did not make it possible

4If a tie occurs, the label is randomly chosen from among those with maximum frequency.
5This criterion is similar to that of community in a strong sense by Radicchi, with a ≥ sign instead

of >.



3.3. COMPARISON METRICS 73

to observe the effects of the scaling limit of modularity, which becomes more evident for

larger networks. The local methods by Lancichinetti et al. [96] and Palla et al. [123],

reproduced the same phenomenon over a larger range of values. In conclusion, the ex-

istence of a resolution limit for modularity questions its capacity for finding community

structures with scale-free degree distributions in heterogeneous networks. In Section 3.5.7

we will use the benchmark by Lancichinetti-Fortunato-Radicchi [97] in order to show the

effects of the scaling limit of modularity in the degree distribution of the communities.

Lastly, among the global methods we mention InfoMAP, which is based on a novel

idea proposed by Rosvall and Bergstrom (2008) [138]. In their work, the authors sug-

gested that the best community structure is the one which minimizes the description

length, i.e., the amount of information in a joint encoding of the community structure

and the graph. In other words, if a community structure is optimal, it should be possible

to recover the whole graph from the community assignment to vertices, with very little

additional information. At the same time, the amount of information of the community

assignment should not be excessive. The authors have minimized this global functional

by different methods, as simulated annealing [138] and random walks [139].

The description length. In order to compute the description length of a partition C
we need: (i) a graph encoding in which each community is assigned a code, and (ii) a set

of internal encodings, one for each community, which assign a code to each vertex inside a

community. The description length thus represents the average length of the description

of an infinite random graph using this set of encodings. It is computed in the stationary

state of the Markov process associated to the graph. The minimum description length,

L(C), is the minimum average length from among all the encodings, and corresponds to

the Shannon limit. Its formula, which is known as map equation, can be found in [137].

Here we only write it in terms of our measures mV and cE, for undirected graphs:

L(C) =

(∑
C∈C

cE(C)

)
log

(∑
C∈C

cE(C)

)
− 2

∑
C∈C

cE(C) log(cE(C))−

−
∑

v∈V (G)

mV (v) log(mV (v)) +
∑
C∈C

(cE(C) +mV (C)) log(cE(C) +mV (C))

3.3 Comparison metrics

As the notion of community does not have a unique definition but rather depends on the

context, we need to establish criteria for measuring the goodness of the different commu-

nity discovery methods. In principle, we distinguish two ways to evaluate performance:
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Quantity Notation Definition Equivalences

Size s(Ci) |Ci|

Degree d(Ci)
∑

v∈Ci d(v) |Ci, V (G)|

Degree measure mV (Ci)
d(Ci)

2e(G)

Internal degree din(Ci)
∑

v∈Ci d
in
Ci

(v) |(Ci, Ci)|

Internal degree measure mE(Ci)
din(Ci)

2e(G)

|(Ci, Ci)|
2e(G)

External degree dout(Ci)
∑

v∈Ci d
out
Ci

(v) |(Ci, V (G)\Ci)|

External degree measure cE(Ci)
dout(Ci)

2e(G)

|(Ci, V (G)\Ci)|
2e(G)

Cut measure mE(Ci × Cj)
|(Ci, Cj)|

2e(G)

Mixing parameter µ(Ci)
mV (Ci)−mE(Ci)

mV (Ci)

∑
v∈Ci

µ(v) · d(v)

d(Ci)

Table 3.3: Community structure notation (Part 2).

• Quantifying goodness of community structure by some global functional. As an ex-

ample we shall mention modularity [45] and the minimum description length [138].

In these cases, we would rather say that the functional imposes its own definition

of community structure.

• In networks with a priori defined communities, we may compare both community

structures (the a priori structure and the obtained one) by using a comparison

metric. Again, two possibilities arise:

– Using real networks. In a few real networks community structure is known.

Some examples are the karate network, the dolphins networks and the college

football network.

– Using random graphs with community structure as benchmarks. We recall

the Girvan-Newman benchmark, which is a particular case of the planted

l-partition model (see page 61), and the Fortunato-Lancichinetti-Radicchi

benchmark (see page 61).

In this section we shall discuss the following comparison metrics in the context of

the community detection problem: the mutual information, the Jaccard index and the
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fraction of correctly classified vertices6.

Mutual information The mutual information is used in Information Theory for quan-

tifying the amount of information in common between two or more random variables. In

order to use it as a measure of comparison between community structures, we shall define

two random variables, X1 and X2, associated to the partitions C1 = (C11, C12, ..., C1n)

and C2 = (C21, C22, ..., C2m) of a graph G [54]. Let us consider a random process in which

a vertex from V (G) is picked at random, with uniform distribution, and the subindex of

its community in the first partition, σC1(v), is observed. We define the random variable

X1 as the subindex of this community, which ranges between 1 and n. The probability

distribution for X1 is:

P[X1 = i] = pi =
|C1i|
n(G)

,

with i = 1, 2, ..., n. The entropy of the partition C1 is defined as:

H(C1) = −
n∑
i=1

pi · log (pi) .

We define the second random variable X2 in a similar way, but considering now the

partition C2. Then we define the following joint distribution for X1, X2:

P[X1 = i,X2 = j] = pij =
|C1i ∩ C2j|
n(G)

,

with i = 1, 2, ..., n, j = 1, 2, ...,m. The joint entropy of C1 and C2 is defined as:

H(C1, C2) = −
n∑
i=1

m∑
j=1

pij · log (pij) ,

and the mutual information between them is:

MI(C1, C2) = H(C1) +H(C2)−H(C1, C2) .

6The term metric is not used here in a rigorous sense. The formal definition of metric requires
fulfilling conditions as positivity, symmetry and the triangular inequality. In this sense: (i) the mutual
information is a metric if normalized in a specific way, but not as we do here; (ii) the Jaccard index,
JI(x, y), produces a metric if 1 − J(x, y) is considered. J(x, y) would rather be a similarity measure;
(iii) the fraction of correctly classified vertices is not a metric, as symmetry does not hold.
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The normalized mutual information between C1 and C2 is: [54]

NMI(C1, C2) =
2MI(C1, C2)

H(C1) +H(C2)
=

= −2 ·

∑n
i=1

∑m
j=1 pij · log

(
pij
pi·pj

)
∑n

i=1 pi · log (pi) +
∑m

j=1 pj · log (pj)
. (3.3)

The normalized mutual information lies between 0 and 1, and it gives a sense of the

similarity between two partitions, in terms of the information about one of them that

underlies in the other. It reaches a value of 1 when both partitions are coincident7.

Jaccard index The Jaccard index computes the ratio of vertex pairs assigned to the

same community in both partitions C1 and C2, to the number of vertex pairs which belong

to the same community in either one or both partitions. We introduce the following

quantities:

• a11: Number of pairs (v, w) assigned to the same community in both C1 and C2.

• a01: Number of pairs (v, w) assigned to the same community just in C2.

• a10: Number of pairs (v, w) assigned to the same community just in C1.

• a00: Number of pairs (v, w) assigned to different communities both in C1 as in C2.

This index is defined as:

JI(C1, C2) =
a11

a11 + a01 + a10

.

We observe that a11, a01y a10 can be computed as:

a11 =
∑
C1i∈C1

∑
C2j∈C2

|C1i ∩ C2j|(|C1i ∩ C2j|+ 1)

2
,

a10 =
∑
C1i∈C1

|C1i|(|C1i|+ 1)

2
− a11 ,

a01 =
∑
C2j∈C2

|C2j|(|C2j|+ 1)

2
− a11 ,

7For a deeper analysis on the properties of the entropy and the mutual information in the context
of Information Theory, we suggest consulting the book by Cover and Thomas [52].
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and thus we arrive at the following formula for the Jaccard index:

JI(C1, C2) =

∑
C1i∈C1

∑
C2j∈C2

|C1i∩C2j |(|C1i∩C2j |+1)

2∑
C1i∈C1

|C1i|(|C1i|+1)
2

+
∑

C2j∈C2
|C2j |(|C2j |+1)

2
−
∑

C1i∈C1
∑

C2j∈C2
|C1i∩C2j |(|C1i∩C2j |+1)

2

.

Fraction of correctly classified vertices This metric was proposed by Newman [113]

and we shall define it by introducing a function f whose domain is an a priori community

partition Cap = (Ca1, Ca2, ..., Can) and its target is the partition obtained by some method

M , CM = (CM1, CM2, ..., CMm). For each a priori community Cai we shall assign that

community CMj which shares with it the largest number of vertices8:

f(Cai) = arg max
CMj∈CM

{Cai ∩ CMj} .

f is not necessarily a bijection, because several a priori communities may have been

assigned the same community in the target set. The minority vertices in Cai (i.e., those

which do not belong to f(Cai)) will be considered as incorrectly classified. The vertices

contained in Cai ∩ f(Cai) will be considered as correctly classified if and only if no

other a priori community has the same image in the target set (i.e., the same assigned

community). We shall introduce a new function g(Cai) defined as the number of vertices

in the intersection when f(Cai) has just one preimage, or 0 otherwise:

g(Cai) = |Cai ∩ f(Cai)| · 1{∀C 6= Cai ∈ Cap : f(C) 6= f(Cai)}

Thus, the fraction of vertices of Cap correctly classified by CM is defined as:

FCCV (Cap|CM) =
∑

Cai∈Cap

g(Cai)

n(G)
.

This coefficient should not be applied between partitions obtained by different methods,

because it assumes that one of the partitions is the real community structure. In fact, the

fraction of correctly classified vertices is assymetric: FCCV (Cap|CM) 6= FCCV (CM |Cap).

8In [113] Newman does not explain what should be done if many communities at the target set
share the maximum number of vertices with the a priori community. In order to untie this situation
we decided to choose one of them at random, so that the metric will not be deterministic. The survey
by Fortunato, instead, suggests that the image of Cai should contain most of the vertices in Cai, i.e. at
least half plus one, or either it will not be counted into the fraction of correctly classified vertices ([70],
page 74).
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3.4 Analysis of the Q functional (modularity)

Since its original expression, contained in Equation (3.1), the modularity has had several

interpretations. Here we present two of them, and introduce our own interpretation as

a signed measure, from which many of its properties will be deduced.

Interpretation as a quadratic assignment problem Smith and White (2005) [146]

restated the problem of modularity maximization as a quadratic assignment one. Given

a partition C, we define a vector xC of N elements for each community C ∈ C. This

vector will be assigned a value of 1 in its i-th position if and only if the vertex vi is

assigned to community C in the partition, and 0 otherwise. We may now rewrite the

modularity as:

QG(C) = −
∑
C∈C

xC
TLQxC ,

where the matrix LQ has the following components:

lij =
d2(vi)

4e2(G)
− Aij

2e(G)
.

If all the vectors xC are joined into an assignment matrix X whose components xic

represent the assignment of community Cc to the vertex i, then we get to the following

expression:

QG(C) = −Tr(XTLQX) .

Modularity maximization has been thus restated as the problem of minizing the trace of

XTLQX, subject to the restriction that X is an assignment matrix, i.e., that XTX is a

diagonal matrix with discrete values {0, 1} and its trace is n(G).

This translation into a quadratic assignment problem leads to the use of spectral

decomposition methods, which compute the components of the main eigenvectors of

LQ. As the eigenvectors components are not discrete but continuous, usually some data

clustering algorithm as the k-means has to be applied in order to extract the communities.

Figure 3.1 illustrates this approach with the football network.

In 2006 Newman suggested using a similar approximation for the particular case of

graph bijection (i.e., a partition into 2 communities) computing the graph laplacian [117].

Interpretation as a Potts spin-glass model [132]. Reichardt and Bornholdt showed

that modularity is proportional to the Hamiltonian of a Potts model in which the spin

values σ(vi) of the vertices represent the subindexes of their communities in a partition
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Figure 3.1: Spectral methods in community discovery. Football network. Here we apply
the spectral decomposition of the matrix LQ to the football network. The vertex coor-
dinates will be determined by the main eigenvectors of the matrix. In these figures we
only show the 3 eigenvectors which are associated to the 3 largest eigenvalues. Vertex
colors point out the a priori communities of the football network.

C = (C1, C2, ..., Cn):

Hγ({σ(vi)}) = −
∑
i,j

Jij1{σ(vi) = σ(vj)} ,

in which: the left term points out that the value of H is a function of the set of spins;

in the right term, the matrix J represents the coupling between vertices and is defined

as Jij = Aij − γ d(vi)d(vj)

2e(G)
; 1{σ(vi) = σ(vj)} takes a value of 1 when i and j have both the

same spin, and 0 otherwise; the γ parameter is related to the temperature. Under these

terms, modularity can be restated as:

QG(C) = −H1({σ(vi)})
2e(G)

.

Thus, the partition maximizing modularity corresponds to the ground state of the

spin-glass. In this state, the graph communities are reflected as the sets of vertices having

the same spin. By controlling the temperature with γ, different resolution levels of com-

munity structure might be explored. However, it has been shown that this adjustment

does not solve the resolution limit problem [95].

Interpretation as a signed measure. Our interpretation of modularity as a signed

measure arises from the definition of two measures, mE and mV . The first of them is a
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measure on V (G)× V (G), while the second is a measure on V (G). We shall define mE

by establishing its value for each pair (u, v) ∈ V (G)× V (G) and additivity, whereas mV

will be defined from its value for each v ∈ V (G) and additivity:

mE(u, v) =
1{u→ v}

2e(G)
(3.4)

mV (v) =
d(v)

2e(G)
. (3.5)

Finally, by using mV we define the following product measure, mV V , as

mV V (u, v) = mV (u)mV (v) .

From these definitions it follows that mV V (C×C) =
d2(C)

4e2(G)
and mE(C×C) =

din(C)

2e(G)
for every C ⊂ V (G). In order to simplify this notation, we shall call them m2

V (C) and

mE(C). All these definitions are resumed in Table 3.3.

From these two measures and considering the Equation (3.1), modularity can be

restated as

QG(C) =
∑
Ci∈C

mE(Ci)−m2
V (Ci) .

If we introduce D(C) =
∑

iCi × Ci, by applying simple measure properties we have

QG(C) = m̃(D(C)) = mE(D(C))−mV V (D(C)) , (3.6)

from where we observe that QG(C) is a signed measure (because it arises as the difference

between two measures).

From this interpretation of Q, the following results can be easily proved:

• Community join. Given a partition C, any partition C ′ built from the union of two

communities Ci and Cj in C has a modularity value of:

Q(C ′) = Q(C) + 2m̃(Ci × Cj) .

Thus, we observe that the modularity will increase if and only if

m̃(Ci × Cj) = mE(Ci × Cj)−mV (Ci)mV (Cj) ≥ 0 .

• Resolution limit. This question was stated by Fortunato and Barthélemy in 2007,

after analyzing the modularity maximization problem in some simple graphs and

observing that it is affected by a resolution limit. This limit implies that the com-
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Figure 3.2: Modularity interpretation as a signed measure. Let us consider a partition
C = (A,B,C,D). We shall visualize the space V (G) × V (G) in a grid, in which we
place in consecutive order those vertices belonging to the same community in C, and we
assign each vertex a length equal to mV (vi). As mV is a unitary measure, we get the
[0, 1]×[0, 1] grid. To the left, we observe the definition of the region D(C) =

∑
C∈C C × C.

To the right, we show that the union of two communities C and C ′ produces a new
partition C ′ and a new region D(C ′) in which modularity undergoes a variation of ∆Q =
m̃(D(C ′))− m̃(D(C)) = 2m̃(C × C ′).

munities obtained by modularity maximization have a “level of detail” depending

on global graph properties, and not only on its local structure. This phenomenon

is related to the fact of modularity being a global functional [71]. The authors put

some simple graphs as example, like a clique ring or a graph containing two small

communities and a large one connected between them (see Figure 3.3). For the case

of a ring with R cliques of order k, they arrived at the following clique-separation

condition:

R < k(k − 1) + 2 [71].

Some time later Kumpula et al. [95] showed that this phenomenon is also present

when the γ resolution parameter by Reichardt and Bornholdt is used, and they

obtained a generalized condition for the clique ring at a resolution γ:

R

γ
< k(k − 1) + 2 [95].

The larger the value of γ, the more flexible this condition is, and cliques of smaller

order can be distinguished. In other words, a larger γ implies a higher resolu-

tion, i.e., a smaller temperature. Unfortunately, this will also break the largest

communities, so that it does not solve the resolution limit problem efficiently.
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Figure 3.3: Modularity’s resolution limit. Examples. (Left) R cliques of order k, con-
nected in a ring. This graph contains e(G) = Rk(k−1)/2+R edges. When the number of
cliques, R, is larger than k(k−1)+2, modularity prefers to join some cliques. The figure
illustrates the optimal partition for k = 4 and R = 15. Each color represents a commu-
nity in this partition. (Right) A situation in which two cliques of size p are connected
between them and towards a third clique of size k > p. This graph has n(G) = k+2p ver-
tices and e(G) = k(k−1)/2+p(p−1) edges. If the condition k(k−1) > (p(p−1)+1)2 +7
is fulfilled, the the modularity optimization prefers to join the small communities. E.g.,
with p = 5 this condition is fulfilled when k ≥ 22. The figure shows the optimal partition
for k = 22 and p = 5. The general results illustrated in both figures easily come out
from our expression of the resolution limit (Equation (3.7)).

Both works by Fortunato and Barthélemy and by Kumpula analyze particular

cases, but they do not arrive at a general formalization of the problem. Kumpula’s

work is imprecise when mentioning that “communities with less than some number

of links are not visible” ([95], pág. 1). As we shall see later, this is not true.

Now we shall show that the resolution limit can be easily stated and proved into

our framework. Let us suppose that C∗ is an optimal partition of a graph G. Then,

none of its unions will increase the modularity value, i.e., ∀Ci, Cj, i 6= j:

m̃(Ci × Cj) = mE(Ci × Cj)−mV (Ci)mV (Cj) ≤ 0 .

Applying measure additivity and a simple algebraic inequality:

m2
V (Ci ∪ Cj) = (mV (Ci) +mV (Cj))

2 ≥ 4mV (Ci)mV (Cj) ,
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we get the following condition for a partition being optimal:

4mE(Ci × Cj) ≤ m2
V (Ci ∪ Cj) . (3.7)

The right-side term of this inequality is the degree of Ci∪Cj squared, normalized by

twice the graph size, also squared. This term falls out much slower than mE(Ci ×
Cj). As a consequence, as the graph size increases modularity optimization cannot

keep both communities separate, unless they are unconnected. In other words, for

any pair of connected communities Ci and Cj, if the graph growths without changing

the neighborhoods of Ci and Cj, at some moment modularity optimization will join

the communities. In particular, modularity optimization would rather prefer to join

the small communities when they are connected.

So, does it mean that a minimum community size is implied at the modularity

optimum? Let us consider the case of two communities Ci and Cj connected by at

least one edge. They will verify that:

m2
V (Ci ∪ Cj) ≤ (mV (Ci) +mV (Cj))

2 ≤ 4 max(d2(Ci), d
2(Cj))

4e2(G)
(3.8)

4mE(Ci × Cj) ≥
4

2e(G)
. (3.9)

These conditions imply that the communities will not be resolved (i.e., they will

be joined at the modularity optimum) if it holds that

4

2e(G)
>

4 max(d2(Ci), d
2(Cj))

4e2(G)
,

or, which is the same

√
2e(G) > max(d(Ci), d(Cj)) .

This means that if both communities are small enough, they will be joined. Nonethe-

less, a small community may “survive” and be resolved when it is only connected

to large communities. This aspect is ambiguous in Kumpula’s work, where it can

be read that “communities with less than e(G)
2

links are not visible” [95](page 1)9.

• Controlling the temperature. Our interpretation can also include the generalization

by Reichardt and Bornholdt [132]. For some resolution value γ, we define the

9The number of internal edges is din(C)
2 . As din(C) < d(C), our inequality implies that

√
e(G)
2 >

max
(
din(Ci)

2 ,
din(Cj)

2

)
.
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generalized modularity as:

Qγ(C) = m̃γ(D(C)) = mE(D(C))− γmV V (D(C)) .

This definition is coincident with −Hγ({σ(vi)})
2e(G)

. In both of them, when setting

γ = 1, Q(C) is recovered. All the previous results can be immediately generalized.

In particular, the resolution limit for some γ value can be expressed as

4mE(Ci × Cj) ≤ γm2
V (Ci ∪ Cj) . (3.10)

Other results of this interpretation of modularity can be found in our article [33].

There, we also propose a greedy algorithm for finding weakly optimal partitions.

3.4.1 Limitations

In ending this section we summarize the two results which stated (together with the

resolution limit) the necessity of finding outstanding new methods for community detec-

tion:

• In 2008 Brandes et al. proved that the modularity optimization problem is NP-

complete [31]. As a consequence, the problem may only be approached by heuristic

methods.

• More recently, in 2010, Good et al. [81] studied the extreme degeneracy of modular-

ity. This degeneracy implies that around the optimum there exist an exponential

number of peaks for which the modularity values are very close to the optimal

value. This result questions the real significance of the partitions maximizing Q.

3.5 The FGP method

In this section we will present our local community detection method, called FGP (Fit-

ness Growth Process).

This method is an extension of the work by Lancichinetti et al. (2009) [96], in which

a process is defined based on a fitness function fL with a parameter α:

fL(C) =
din(C)

(din(C) + dout(C))α
. (3.11)

When the process begins, the initial community is composed of some vertex v. Then,

the following stages are performed:
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1. A vertex w is chosen which maximizes the increase in the community fitness func-

tion, and this vertex is inserted into the community.

2. All the vertices whose remotion increases the community fitness function are re-

moved.

3. Return to step 1.

The process ends when no vertex can be inserted. The community obtained under this

process is called the natural community for vertex v. The α coefficient plays the role of

resolution parameter; the larger the α, the larger the natural communities. For α = 1

the fitness function is closely related to the notion of community in a weak sense by

Radicchi [129], which we introduced in Section 3.2.

Once the first natural community is finished, a new one is started with one of the

vertices that do not belong to it. Under the same process, this new community may

even incorporate vertices belonging to the first one, producing an overlap. The process

is repeated until every vertex belongs to at least one community. The final result is a

graph cover.

Our contribution is to define a uniform growth process which goes through the whole

graph visiting the communities one after the other. We shall define a new fitness function

which also contains a resolution parameter, and we shall propose an algorithm which

monotonically increases the fitness function as it traverses the graph, while dynamically

updating the resolution parameter. Finally, by means of a cutting technique, we obtain

a graph partition into communities.

3.5.1 Formalization of the algorithm by Lancichinetti et al.

Here we present a formalization of the procedure described in Lancichinetti et al. [96]

for obtaining the natural community of a vertex v. We generalize the procedure for any

fitness function f . We shall call this procedure a growth process for f .

The growth process has a series of stages of vertex insertions and eliminations. In

the insertion stages, one and just one vertex must be inserted (otherwise, the process

ends), whereas in the elimination stage it may happen that no vertex is to be removed.

Thus, vertex sequences containing one insertion and elimination sets (which might be

empty) will occur. The evolution of the community throughout these sequences will be

denoted with two subindexes: m and k. The m subindex will be increased by 1 after

each pair insertion–elimination(s) occurs, going from 0 upto M . The k parameter will

be increased for each inserted-eliminated vertex into that pair, from 0 upto km. In this
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way, the sequence of communities throughout the algorithm will be denoted as:

(Cmk) = (C00, C10, ..., C1k1 , , C20, ..., C2k2 , ..., , CM0, ..., CMkM ) .

Observe that:

• With m = 0 the first community, C00, contains the initial vertex, which will not

be removed.

• For any different m related to an insertion–elimination(s) sequence, the first com-

munity in the sequence (Cm0) equals the last community of the previous sequence

(C(m−1)km−1), because the new vertex has not been inserted yet. Then, Cm1 will

be the union of Cm0 and the vertex inserted in this m-th sequence. The remaining

Cmk (for 2 ≤ k ≤ km) each of them correspond to the elimination of one vertex

from the previous community, Cm(k−1).

• For the last community, CMkM , no insertion is possible that increases the fitness

function, and thus the process ends.

This procedure is formally described in Algorithm 1. In particular, for f = fL we

get the procedure descripted in Lancichinetti et al. [96] and the last community, CMkM ,

is called v’s natural community10. Table 3.4 shows an example.

In the particular case of Lancichinetti et al.’s fitness function, fL, we observe the

following fact: even though the line 1.4 in the algorithm considers every vertex w outside

the community Cm0, just those vertices belonging to the community boundary (i.e.,

those which do not belong to Cm0 but have some connection towards it) may produce

an increase in the fitness function. It is thus not necessary to consider vertices outside

the boundary.

The computational complexity of the process (assuming that eliminations are infre-

quent) grows as the product of the graph order and the final community size: O(n(G) ·
|CMkM |). This comes from the fact that each insertion must consider every vertex in

the boundary (which are at most n(G)), and the number of insertions is in the order of

10Minimal differences exist between the procedures, which we shall mention:

• 1. Lancichinetti et al. do not suggest what to do if, at any moment, the seed vertex v fulfills the
elimination condition (which might happen). It this case, it does not seem reasonable to remove
it and then call the result as v’s natural community. We consider this to be an omission, so we
forbid the elimination of this vertex.

• 2. Lancichinetti et al. choose in the insertion stage the vertex which produces the largest increase
in the fitness function. We choose any vertex which increases it, instead. We consider that the
greedy choice does not have any particular foundation, and in fact Lancichinetti et al. ([96], page
4) suggest the possibility of exploring other election mechanisms.
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Algorithm 1: Natural communities

Input: A graph G, a fitness function f, an seed vertex v ∈ V (G)
Output: A growth process C00, C10, . . . , Ca0, . . . , Caka , . . . , . . . , CMkM

1.1 begin
1.2 D00 = {v}
1.3 m = 0
1.4 while there exists some w out of Cm0 such that f(Cm0 + w) > f(Cm0) do
1.5 Cm1 = Cm0 + w
1.6 k = 1
1.7 while there exists some w ∈ Cmk, w 6= v : f(Cmk − w) > f(Cmk) do
1.8 Cm(k+1) = Cmk − w
1.9 k = k + 1

1.10 end
1.11 C(m+1)0 = Cmk
1.12 m = m+ 1

1.13 end

1.14 end

CMkM (under the hypothesis that eliminations are infrequent). In the worst case, the

computational cost of finding a natural community is of O(n(G)2). As the procedure in

Lancichinetti et al. must find a graph cover, the complexity can be bound as the product

between n(G)2 and the number of communities in the cover. This makes for a worst-

case complexity of O(n(G)3) when communities have great overlap, and a complexity of

O(n(G)2) when the overlapping is small.

3.5.2 Fitness functions

The work by Lancichinetti et al. suggests exploring other fitness functions in the con-

struction of natural communities. Here we shall deal with two parametric families of

fitness functions, based in our measures mV and cE (see Table 3.3):

Lt =
mV − cE
m

1/t
V

(3.12)

Ht = mV (1−mV /2t)− cE , (3.13)

with t > 0. The first fitness function is proportional to the one in Lancichinetti et al.,

for α = 1/t. As we shall see, t plays the role of resolution parameter.

A differential analysis. We will show these two facts:

• In both fitness functions, Lt and Ht, changing the resolution parameter t does

not essentially affect the evolution of the growth process, but only defines the
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termination criteria. Vertices that are candidates for insertion or elimination under

some value of the resolution parameter, will remain candidates when the resolution

is decreased (i.e., when we obtain larger natural communities).

• Both fitness functions, Lt and Ht, are essentially equivalent, in the sense that

candidates for insertion or elimination for the Lt process are also candidates for

the Ht process.

In order to prove this, let us consider a community Cmk and some vertex w. If w 6∈
Cmk then we shall consider vertex insertion, otherwise we shall consider its elimination.

In both cases we shall get a new community C+
mk = Cmk ± w11.

Let us denote ∆mV = mV (C+
mk)−mV (Cmk) and ∆cE = cE(C+

mk)− cE(Cmk), and let

us consider that s, t > 0 are two fixed values of the resolution parameter. Then we get

the following approximate expression for the difference quotient of Lt:

∆Lt
∆mV

≈ L′t =
1

m
1/t
V

(
1− ∆cE

∆mV

− L1

t

)
.

For the difference quotient of Ht we obtain:

∆Ht

∆mV

≈ H ′t =

(
1− ∆cE

∆mV

− mV

t

)
.

Notice then the following relations:

H ′t = H ′s +
t− s
ts

mV (3.14)

m
1/t
V L′t = m

1/s
V L′s +

t− s
ts

L1 (3.15)

H ′t = m
1/t
V L′t + (L1 −mV )/t . (3.16)

Equation (3.14) shows us that if t > s and H ′s > 0, then H ′t > 0, which means that

if the vertex w is a candidate for insertion into Cmk for the Hs function, then it is also

a candidate for insertion for the Ht function.

Equation (3.15) shows us analogously that if t > s and L′s > 0, then L′t > 0, which

means that if the vertex w is a candidate for insertion into Cmk for the Ls function, then

it is also a candidate for insertion for the Lt function.

This shows that the parameter t does not play an essential role during the growth

process for Ht or Lt, but merely establishes the termination criterion.

11We shall call C+
mk to the element which follows Cmk in the sequence. Committing an abuse of

notation, we shall write Cmk + w instead of Cmk ∪ {w}, and Cmk − w instead of Cmk − {w}.
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Equation (3.16) shows a delicate fact: if a vertex w is a candidate for insertion

(elimination) for the Lt function and mV < L1 then it is a candidate for insertion

(elimination) for the Ht function. The condition mV < L1 is usually true; notice that

from mV > L1 it would follow that cE > mV (1 −mV ), which contradicts the notion of

community, because the second term would be the mean of the first one if the vertices

were to be selected randomly. Thus, both processes are essentially equivalent, their

difference lying in the termination criterion. There are approximations involved, so that

our previous comments are rough and qualitative, but our experience testing both fitness

functions confirms them.

3.5.3 The fitness growth process (FGP)

The described algorithm gets natural communities for different values of the t parameter.

We have seen that, as a general rule, the larger the t value, the larger the communities,

so that t behaves as a resolution parameter. It is reasonable to wonder whether it is

possible to obtain all these communities for different values of the resolution parameter

with a unique process. We shall see that this is indeed possible when using our Ht

function.

We shall call ∂(Cmk) to the boundary of Cmk, which is formed by those vertices which

lie outside of Cmk but have one or more connections to vertices in it.

Let us now consider a community Cmk and its boundary ∂(Cmk). We shall analyze

what happens when trying to insert into Cmk some vertex w in the boundary, or either

remove it in case it belongs to Cmk
12. The updated fitness function value will be in each

case (±)

Ht(C ± w) = (mV + ∆mV )(1− (mV + ∆mV )/2t)− (cE + ∆cE)

= mV (1−mV /2t)− cE

−∆mV

t
(mV + ∆mV /2) + ∆mV −∆cE

= Ht(C)− ∆mV

t
(mV + ∆mV /2) + ∆mV −∆cE .

The variation of the fitness function is

∆Ht = −∆mV

t
(mV + ∆mV /2) + ∆mV −∆cE ,

from where we observe that for t big enough (or small enough, according to ∆mV ’s sign),

12Those vertices which do not belong to Cmk nor its boundary are not considered, because ∆Ht is
always negative for them, for every t value.
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∆Ht will be positive. The critical value of t is:

tc(Cmk, w) =
∆mV (mV + ∆mV /2)

∆mV −∆cE
.

It follows that if we are inserting w, then t > tc → ∆Ht > 0, whereas if we are eliminating

it, then t < tc → ∆Ht > 0.

Let us now suppose that when we reach the termination criterion of the natural

community for some resolution t, we increase this parameter as little as possible so

as to arrive at a new t′ = tc(Cmk, w) in which we can insert a new vertex w without

diminishing the value of Htc . The result will be a uniform growth process for Htc , where

tc is dynamically updated. If we extend this process till we span the whole graph, we

will get a sequence of natural communities (Cmk) at different resolutions.

Each natural community Cmk will have some associated resolution tmk, which will be

updated after each insertion, as:

t+mk = max{tmk, tc(Cmk, w)} ,

where t+mk is the resolution of the new natural community C+
mk = C+

mk ∪ {w}. The

sequence formed by the resolution values (tmk) will be a non-decreasing one, and each

community in the sequence C00, ..., Cmk will be a growth process for Ht, ∀t > tmk. The

sequence of natural communities (Cmk) built under this procedure is a uniform growth

process for H.

We describe this procedure in Algorithm 2.

3.5.4 Extracting the communities

Our hypothesis states that the uniform growth process will traverse the communities one

after the other until it spans the whole graph. In each step, the growth process tends to

choose the next vertex in terms of its cohesion with the natural community at that time.

Thus, two vertices which are consecutive in the process should either belong to the same

community or either be border vertices. Our community detection method includes a

technique for cutting the process into communities.

We consider the sequence of communities (Cmk) in which several insertions and elim-

inations are included. At the end of the sequence, the whole graph is contained into

the natural community. Then, every vertex must appear an odd number of times in the

sequence (k insertions and k − 1 eliminations). As a first step, we shall now keep only

the last insertion of each vertex. This insertion is the one which determines the vertex

position in a new sequence called S. In this sequence, each vertex appears just once.
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Algorithm 2: Uniform growth process for H

Input: A graph G, a seed vertex v ∈ V (G)
Output: A uniform growth process for H:

C00, C10, . . . , Ca0, . . . , Caka , . . . , CM0, . . . , DMkM

2.1 begin
2.2 C00 = {v}
2.3 ta = 0
2.4 m = 0
2.5 while there exists some w ∈ ∂(Cm0) do
2.6 let w0 be such that tc(Cm0, w0) = minw∈∂(Cm0)(tc(Cm0, w))
2.7 ta = max{ta, tc(Cm0, w0)}
2.8 Cm1 = Cm0 + w0

2.9 k = 1
2.10 while there exists some w ∈ Cmk, w 6= v : tc(Cmk, w) > ta do
2.11 Cm(k+1) = Cmk − w
2.12 k = k + 1

2.13 end
2.14 C(m+1)0 = Cmk
2.15 m = m+ 1

2.16 end

2.17 end

Thus, the sequence defines an ordering of the set V (G).

The conversion of this sequence S into a set of final communities C = (C1, C2, ..., CN)

is performed by observing the behavior of the following function:

S(w) =
cE(C(w))

mV (C(w))
, (3.17)

where the C(w) sets are subsequences of S, from the point in which the last community

was started, up to w. We will close a community and start a new one each time we

observe an increase in the function S(w).

In other words, the function S(w) considers the set of vertices since the beginning

of the last community, and computes the ratio of the normalized external community

degree (cE) to its normalized degree (mV ). In the next section, we shall offer a statistical

argument for the correct behavior of this cutting technique.

3.5.5 Behavior in the thermodynamic limit

In order to understand the statistical behavior of the function S(w), we shall consider a

community C = (v1, v2, ..., vn) whose vertices have a homogeneous mixing parameter µ.

That is, they share a fraction µ of their edges with other communities and a fraction 1−µ
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with their own community C. We shall call Ci to the partial communities compressed

from v1’s insertion up to the insertion of some vi. The evolution of S(vi) will follow

Si = S(vi) =
mE(Ci × (V \ Ci))

mV (Ci)
= 1− L1(Ci) .

Our statistical analysis will be based in the following relations:

mE(Ci × (V \ C)) = µmV (Ci)

mE(Ci × Ci) = λimE(Ci × C) .

The first of them follows from the hypothesis that all the vertices in C share a similar

µ. The second is just a definition of a parameter λi which belongs to the interval [0, 1].

From these equations it can be shown, by a straightforward calculation and using the

additivity of mE, that

Si = µ+ (1− µ)(1− λi)

(1− µ)λi = L1(Ci) .

Here we assume that L1 has a monotone increasing behavior throughout the com-

munity construction13, and this implies a monotone decreasing behavior on Si also, even

without assuming a constant µ. We also observe that, for the last vertex in the commu-

nity, vn, it holds that S = µ (because λ = 1).

Now, let us see what happens when the community is finished and we incorporate

some vertex v from the following community, C ′, which has its own mixing parameter

µ′. We shall call C+ to C ∪ {v}, and we define ε by the relation

mE({v} × C) = ε mE({v} × (V \ C ′)) = εµ′mV ({v}) ,

which represents the proportion of external connections from v ∈ C ′ going to vertices in

C.

The new value for S is then:

S+ =
mE(C+ × (V \ C+))

mV (C+)

13Let us recall that the fitness function L1 is related to the concept of community in a weak sense by
Radicchi.
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and it can be shown that

S+ = µ+
(1− 2εµ′ − µ)mV ({v})

mV (C+)
.

If the mixing parameters are not very high (which would imply scarcely cohesive

communities) or either ε is small (which is expected) then this new value for S+ will

break the decreasing behavior of S producing the closure of C and the start of a new

community C ′ containing v′ as its first vertex, v′1.

We can now resume the behavior of S(w) in the following way:

• The function starts from S(w) = 1 when the first vertex of the community is

incorporated (w = v1).

• The function S(w) decreases from 1 up to µ throughout the community construc-

tion.

• The function S(w) will increase when the community is finished and the process

tries to incorporate an external vertex w′.

• Under this condition, a new community C ′ is started with that external vertex and

S(w′) is set to 1.

• Even in case that the mixing parameters of the vertices are not homogeneous,

the minimum of S(w) reached at the end of the community is still the average of

the mixing parameters of the vertices in the community, weighted by each own’s

degree, d(v). To this community mixing parameter we shall call µ(C).

Example: The football network. We shall illustrate the cutting technique in Fig-

ure 3.5 by picturing the evolution of the function S(v) throughout the growth process in

the football network. We clearly observe the function’s decreasing behavior inside each

community. Figure 3.4 visualizes the obtained community partition.

3.5.6 Computational complexity

In this section we shall prove that our community structure detection method has a com-

putational time complexity of O(n(G) · dmax + e(G) · log(n(G))), and a space complexity

of O(n(G) + e(G)).

We begin by analyzing the time complexity. Let us consider a community Cmk in the

process, and its associated parameter tmk. A new vertex is to be inserted. Line 2.6 in
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Figure 3.4: The uniform growth process in the football network.

Algorithm 2 points out that we must insert that vertex w in the boundary of Cmk which

has the minimum tc(Cmk, w). We observe, from the expression of tc, that

tc(Cmk, w) =
∆mV

∆mV −∆cE
· (mV + ∆mV /2) .

From among the vertices in the boundary having the same degree as w, the one with

the minimum tc is the one that minimizes ∆mV
∆mV −∆cE

. For a given degree, minimizing

this expression is the same as minimizing ∆cE, which is proportional to doutC − dinC . So,

if we group the vertices in the boundary into lists according to their degree, and we

order each list by increasing value of doutC − dinC , then we can assure that the vertex in

the boundary which minimizes tc must be at the head of one of these lists. Then we

propose to keep an updated structure with the boundary ∂(Cmk) (see Figure 3.6). We

shall need an analogous structure for the vertices in the community Cmk for speeding

the eliminations; this structure is also shown in the same figure. In this way we reduce

the complexity from analyzing the whole boundary into analyzing dmax vertices at most.

We shall call lmax to the maximum length of one list, and these lists will be imple-

mented with a direct access, ordered structure, as a map or tree. The operations of

insertion preserving order have complexity O(log(lmax)), while the access has complexity

O(1). We are now ready to analyze the complexity of the r-th step.

1. Looking for the vertex w with the minimum tc(Cmk, w) implies finding the minimum

between the heads of each of the lists. This has a complexity O(dmax).

2. Updating the structures involves:

(a) Removing w from its list in the ∂(Cmk) structure. Complexity O(1).

(b) Updating ∆cE for w to (−∆cE). Complexity O(1).

(c) Inserting w into the k(w)-list in the Cmk structure. Complexity O(log(lmax)).
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Figure 3.5: FGP method. Communities discovered in the football network. Image gener-
ated with Gephi.

(d) Updating ∆cE for the neighbors of w, i.e., v ∈ N (w):

i. If v 6∈ Cmk, update ∆cE to ∆cE − 2/(2e(G)). Complexity O(1).

ii. If v ∈ Cmk, update ∆cE to ∆cE + 2/(2e(G)). Complexity O(1).

(e) Reinserting (or inserting) the neighbors of w in the lists:

i. If v ∈ Cmk, reinsert it into the k(v)-list of the structure for Cmk, ordered

by its new value of ∆cE. Complexity O(log(lmax)).

ii. If v 6∈ Cmk, v 6∈ ∂Cmk, insert it into the k(v)-list of the structure for

∂Cmk, ordered by its new value of ∆cE. Complexity O(log(lmax)).

iii. If v 6∈ Cmk, v ∈ ∂Cmk, reinsert it into the k(v)-list of the structure for

∂Cmk, ordered by its new value of ∆cE. Complexity O(log(lmax)).

Putting all together, the complexity of the r-th step is O(dmax + |N (w)| · log(lmax)).

Now, the steps during the growth process may consist not only of insertions, but also

of eliminations. The elimination condition is resumed in line 2.10 in Algorithm 2.
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Figure 3.6: FGP method. Structures kept for optimizing the process. Here we show the
structures kept throughout the process for the natural community Cmk and its frontier,
∂(Cmk). In each of them, vertices are grouped by their degrees (which are represented
by the columns with labels 1, 2, ...dmax). Vertices of the same degree are kept into a logic
structure ordered by increasing ∆cE(v) (or, which is the same, by increasing doutC (v) −
dinC (v)), as a tree or a map. In this picture we show the values of doutC (v) and the degrees
d(v) into a square (we show them just for the vertices in the frontier). In each step we
only have to consider for insertion (elimination) the vertices which lie at the head of the
structures for each degree. In this example, we consider the insertion of v11 and v14, and
we choose v11 because it minimizes the value of tc. By using these structures, we can
reduce the complexity of the process up to O (n(G) · dmax + e(G) · log(n(G))).

The logic of eliminations is exactly the same: i.e., it consists on analyzing the heads

of the lists in the structure for Cmk, looking for some value of tc bigger than the actual

ta. In that case, the vertex is removed from Cmk and its neighbors are updated in an

analogous way as in the insertions, and with a similar time complexity.

During all our experiments, we verified that the eliminations are scarce, and we shall

assume that they are, at most, of the same order as the insertions. Thus, we can assume

that the process consists only of insertions in order to compute the complexity. Under

this hypothesis, each vertex is inserted just once in the process, and the total time

complexity can be expressed as:

O

(∑
w∈V

(dmax +N (w) · log(lmax))

)
.
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The sum over all the neighbors ofN (w) can be translated into the fact that every edge

in the network is considered only once. Regarding lmax, we cannot make any assumption.

In heavy-tailed degree distributions, the amount of vertices with a certain small degree

value may be close to O(n(G)), so we shall bound lmax with n(G). Thus, we have a

complexity of

O (n(G) · dmax + e(G) · log(n(G))) .

We shall also mention that in the initialization, the ∆cE’s and ∆mV ’s of the vertices

are both set to the their degrees. This step does not change the final complexity.

The cutting technique for obtaining a partition from the sequence S has a linear

complexity. It implies processing each element w ∈ S just once, computing the ratio

between cE and mV , which had already been obtained during the growth process.

In conclusion, the complexity of our method is dominated by the growth process

and is O (n(G) · dmax + e(G) · log(n(G))). By using appropriate data structures we man-

aged to reduce the original process complexity, which was of O(n(G)2). These same

structures might also improve the complexity of the covering algorithm by Lancichinetti

et al., whose original complexity lies between O(n(G)2) and O(n(G)3), as discussed in

Section 3.5.1.

Finally, regarding the spatial complexity, it is just of O(n(G) + e(G)), which is also

the spatial complexity of keeping the graph structure in memory. The data structures

on the community and its boundary just contain a degree list of size O(dmax), and a

set of dmax lists storing the information on the vertices for each vertex degree. For each

vertex, information of O(1) is kept, so the set of all lists has an extension of O(n(G)). As

we see, the spatial complexity of these two data structures does not exceed the spatial

complexity of the graph.

3.5.7 Results and data analysis

We have tested our community discovery method in some real networks and in instances

of random graphs generated with the LFR benchmark by Lancichinetti et al.. Thanks

to its low complexity and execution speed (which rivals that of known methods), our

method can be applied in networks of several millions of edges. We have made the source

code available for the scientific community at https://code.google.com/p/commugp/.

Next, we shall show the obtained results and we will produce comparisons with the

following methods:

• InfoMAP, by Rosvall and Bergstrom, based in the minimum description length [138].

• Louvain, by Blondel et al., an efficient greedy algorithm for modularity optimiza-

https://code.google.com/p/commugp/
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BENCH1 BENCH2 BENCH3 BENCH4 BENCH5 BENCH6

Instances 1600 1600 1600 1600 1 1

Type heterog. homog. heterog. homog. heterog. heterog.

αd (vertices) 2.0 - 2.0 - 2.0 2.0

αs (communit.) 3.0 - 3.0 - 2.0 2.0

n(G) 1000 1000 5000 5000 100000 100000

d 10 10 10 10 50 50

dmax 50 50 50 50 1000 1000

smin - - - - 10 10

smax - - - - 1000 1000

cc(G) - - - - 0.40 -

µ
variable
0.05−0.80

variable
0.05−0.80

variable
0.05−0.80

variable
0.05−0.80

0.25 0.60

Table 3.5: List of benchmarks and their parameters.

tion [24].

• LPM, the label propagation method by Raghavan et al. [130].

The instances generated under the LFR model contain between 1000 and 100000

vertices and mixing parameters ranging between 0.05 and 0.80. Benchmarks BENCH1,

BENCH2, BENCH3 y BENCH4 contain sets of 1600 instances each. These 1600 instances are

divided into 16 groups containing 100 instances each. On these 16 groups, the mixing

parameter µ covers the range [0.05− 0.80] in steps of 0.05. In this way, we can observe

the different methods performance under community structures with different cohesions.

A more detailed description of the generated benchmarks is given in Table 3.5. From

among the real networks, we have analyzed the actor network, the jazz bands network

and the Web network of stanford.edu (see Table 3.6).

In Table 3.7 we observe the performance for benchmark BENCH5: a graph contain-

ing 100000 vertices with a mixing parameter µ = 0.25. We observe that the obtained

partition size (2331 communities) is quite close to its a priori size (according to the com-

munities established by the benchmark). The normalized mutual information between

our partition and the a priori one also reflects this similarity. It is also interesting to

compare the modularity values of the partitions obtained under different methods. The

extreme degeneracy phenomenon observed by Good et al. [81] has clear consequences:
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football jazz stanford.edu LiveJournal

n(G) 115 198 255265 4843953

e(G) 613 2742 1941926 42845684

d 10.66 27.70 15.21 17.69

dmax 12 100 38625 20333

cc(G) 0.403 0.633 0.653 0.351

Reference [76] [78] [103] [103]

Table 3.6: List of real networks and their parameters. All the networks have been
considered as undirected graphs.

qualitatively different partitions have very close modularity values (observe for example

the size of Louvain’s partition). The minimum description length also suggests a signi-

ficative difference between Louvain and the other methods, when compared with a trivial

partition. Finally, the community size distributions clearly show the consequences of the

resolution limit. While FGP, InfoMAP and LPM obtain community structures with

heterogeneous degree distributions (and quite close to that of the a priori partition),

Louvain is “forced” to obtain a community structure with more homogeneous commu-

nity sizes. Because of this, the Louvain partition has a smaller number of communities

as compared with the other methods. Table 3.8 also confirms these results for BENCH6,

whose mixing parameter is µ = 0.60.

Figure 3.7 uses a series of boxplots in order to show statistical values of the results

for the 4 benchmark sets with 1000 and 5000 vertices. Recall that each set contains

1600 graph instances in which the mixing parameter ranges between 0.05 and 0.80. The

boxplots reflect the normalized mutual information between the obtained partitions and

the a priori partitions, as a function of the mixing parameter µ. In Figure 3.8 we compare

our results with those of InfoMAP and Louvain. We observe that InfoMAP gets the best

results. In the same figure, we evidence that the modularity tends to generate small

partitions, and this tendency grows as the mixing parameter becomes larger.

Table 3.9 shows the results for a real network: the jazz bands network, formed by 198

bands whose connections point out that they have had some musician in common. As

we do not have a reference partition, we have compared the modularity, the minimum

description length, and the normalized mutual information between methods. Even

though the first two metrics are quite close for all methods (excepting Louvain) the

normalized mutual information reveals that the partitions are structurally different.

We have also analyzed a portion of the Web graph for the stanford.edu domain.
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Figure 3.7: Results of the benchmarks BENCH1-4 (Part I). Normalized mutual informa-
tion of the partitions obtained with the FGP method in the benchmarks BENCH1, BENCH2,
BENCH3 and BENCH4, as a function of the mixing parameter µ. Each box contains statis-
tical information on the 100 instances of the set with the same µ value. The horizontal
line inside each box represents the median of the 100 samples, whereas the box extremes
correspond to the first and third quartile. The full interval (whiskers) spans all the range
of samples.

This network contains 281903 web pages connected by 2312497 hyperlinks14. Table 3.10

shows the results.

The results on the LiveJournal network, with 5 million vertices, is particularly in-

teresting. Due to its size and hardware limitations, we only managed to process it with

FGP and Louvain. Table 3.11 shows that in both cases the community degree distribu-

tions follow a power-law. The resolution limit phenomenon is not observed for Louvain

in this case. This happens because the small communities are not connected among

them. Nonetheless, there are important differences. FGP detects 127058 communities,

whereas Louvain detects 8491. In FGP, the largest community contains 839473 vertices,

whereas in Louvain it contains 23993. Finally, we emphasize that the FGP partition

closely follows a power-law.

In order to visualize our observation relating how the communities in Louvain are

14We have only considered the biggest connected component, which contains the 90% of the pages.
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connected, we have considered the 8 largest communities (in terms of community degree,

d(C)) in Louvain’s partition, a the smallest ones (those with degree at most 5) and we

have visualized their connections with our software SnailVis [19]. Figure 3.10 shows that

the small communities are not connected among them.

In conclusion, we have shown that our FGP method, based on a uniform growth

process, obtains community structures from a local community notion. When the com-

munity degrees of the network follow heavy-tailed distributions, our method can detect

them, without presenting any resolution limit. In the LFR benchmarks our method in

surpassed by LPM and InfoMAP, while in real networks results are quite close. We con-

sider that one of the advantages of our method is its bounded complexity. Both in LPM

as in InfoMAP, it is difficult to perform a complexity analysis. In the former convergence

is not formally guaranteed, while in the latter heuristic methods are needed in order to

minimize the description length, and the computational complexity mostly depends on

the termination criterion.



3.5. THE FGP METHOD 103

FGP InfoMAP Louvain LPM a priori

|C| 2331 2346 314 2336 2346

MI(C, Capriori) 0.977 1.000 0.882 0.999 1.000

L(C) (min.desc. length.) 10.44 10.21 11.15 10.21 10.21

Q(C) (modularity) 0.708 0.731 0.727 0.731 0.731

JI(C, Capriori) 0.897 1.000 0.354 0.992 1.000

FCCV (C, Capriori) 0.920 1.000 0.000 0.945 1.000

µ(C) 0.298 0.252 0.249 0.252 0.252
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Table 3.7: Results for benchmark BENCH5. (Up) Comparison among the partitions ob-
tained by FGP, InfoMAP, Louvain and LPM for an instance of the LFR benchmark
containing 100000 vertices. The network description is given in Table 3.5. In order to
interpret the values of the minimum description length, we shall mention that, for a
trivial partition in which all the vertices were in the same community, the minimum
description length would be of 12.82. The last row, µ(C), represents the average mixing
parameter of the communities in the partition. (Down) Community size distribution for
the partitions obtained with FGP, InfoMAP, Louvain and LPM, and for the a priori
partition. The distribution was adjusted with a logarithmic binning. The similarity in
the community size distribution for such diverse methods as FGP, InfoMAP and LPM
is surprising.



104 CHAPTER 3. DISCOVERING COMMUNITIES IN SOCIAL NETWORKS

FGP InfoMAP Louvain LPM a priori

|C| 1878 2314 150 2104 2315

MI(C, Capriori) 0.914 0.999 0.814 0.989 1.000

L(C) (min.desc. length.) 14.09 13.56 14.37 13.61 13.56

Q(C) (modularity) 0.343 0.390 0.389 0.391 0.391

JI(C, Capriori) 0.635 0.978 0.189 0.814 1.000

FCCV (C, Capriori) 0.589 0.989 0.000 0.706 1.000

µ(C) 0.664 0.601 0.595 0.601 0.601
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Table 3.8: Results for benchmark BENCH6. (Up) Comparison among the partitions ob-
tained by FGP, InfoMAP, Louvain and LPM for an instance of the LFR benchmark
containing 100000 vertices. The network description is given in Table 3.5. (Down) Com-
munity size distribution for the partitions obtained with FGP, InfoMAP, Louvain and
LPM, and for the a priori partition. The distribution was adjusted with a logarithmic
binning.
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Figure 3.8: Results of the benchmarks BENCH1-4 (Part II). (Up) Normalized mutual
information values of the partitions obtained with FGP, Louvain and InfoMAP in the
benchmarks BENCH1, BENCH2, BENCH3 and BENCH4, as a function of the mixing parameter
µ. Each point represents the median of the normalized mutual information for the 100
instances of the set with the same µ value. The normalized mutual information is always
computed against the a priori partition generated by the benchmark. (Down) A similar
statistics for the ratio of the partition sizes (number of communities in them), using the
a priori partition as reference.
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FGP InfoMAP Louvain LPM

|C| 2 5 4 3

L(C) (min.desc. length.) 6.93 6.92 6.87 6.93

Q(C) (modularity) 0.282 0.286 0.443 0.282

µ(C) 0.079 0.401 0.319 0.165

NMI FGP InfoMAP Louvain LPM

FGP 1.0000000 0.8310516 0.6048218 0.9531406

InfoMAP 0.8310516 1.0000000 0.5879541 0.8556317

Louvain 0.6048218 0.5879541 1.0000000 0.5866110

LPM 0.9531406 0.8556317 0.5866110 1.0000000

Table 3.9: Results obtained for the jazz bands network. (Up) Visualization of the parti-
tion obtained with the FGP method. The visualization was generated with Gephi, and
the vertex positioning was performed with a force-directed method. Vertex colors repre-
sent the assigned communities, and their sizes are proportional to the degree. (Center)
Characterization of the partitions obtained by different methods. (Down) Comparison
matrix for the partitions using the normalized mutual information.
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Figure 3.9: FGP method. A community in the Web graph of stanford.edu. In this
figure we show in green those vertices which belong to the community (excepting the blue
vertex, which also belongs to it), and in white/gray the first networks of the community
(i.e., vertices at distance 1 from it). We only draw the edges which are internal to the
community (dark green) and those connecting the community to its first neighbors (light
green), but we do not draw edges between community neighbors. The blue vertex is the
first vertex in the community found by the process. Observe that it is a border vertex.
The vertex sizes are proportional to their degrees. The vertices inside the community
have a mean degree of 40 and a deviation of 10. The big vertices which are drawn
lie between the 15 vertices of highest degree in the whole graph, their degrees ranging
between 20000 and 40000. The picture was generated with Gephi, and the vertices were
positioned with a force-directed algorithm.
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FGP InfoMAP Louvain LPM

|C| 4173 5454 513 4678

L(C) (min.desc. length.) 10.13 9.15 10.47 9.66

Q(C) (modularity) 0.769 0.846 0.920 0.861

µ(C) 0.201 0.198 0.010 0.151
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Table 3.10: Results obtained for the Web graph of stanford.edu. (Up) Comparison
among the partitions obtained by FGP, InfoMAP, Louvain and LPM. (Down) Com-
munity size distributions for the partitions obtained with FGP, InfoMAP, Louvain and
LPM. The distributions were adjusted with a logarithmic binning.
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FGP Louvain

|C| 127058 8491

L(C) (min.desc. length.) 18.05 17.66

Q(C) (modularity) 0.304 0.727

µ(C) 0.551 0.126
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Table 3.11: Results obtained for the graph of the LiveJournal social network. (Up)
Comparison among the partitions obtained by FGP and Louvain. (Down) Community
size distributions for the partitions obtained with FGP (green) and Louvain (violet).
The distributions were adjusted with a logarithmic binning.
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Figure 3.10: Communities obtained by Louvain in LiveJournal. Visualization of the
8 biggest communities, those with degree at most 5, and the edge-cuts among them,
in the partition of the LiveJournal social network obtained by Louvain. Each circle
represents a community C, whose radius is proportional to the logarithm of its degree,
d(C). The edge widths are proportional to the logarithm of the edge-cuts. We observe
that, while the big communities almost form a clique among them, the small communities
are not interconnected. The drawn communities may also have edges towards medium-
sized communities, which are not drawn. The picture was generated with our software
SnailVis [19].



Chapter 4

Connectivity in the Internet

In this chapter we shall address the study of the Internet as a complex system. We shall

begin by stating the technological relevance of its study, and by mentioning the most

important results up to now. In Section 4.2 we will present our contribution, which

relates the edge-connectivity of the network to the k-core decomposition, and we shall

apply it to recent Internet explorations.

4.1 Introduction

In its beginnings, the Internet was composed by a series of troncal connections referred

to as the backbone. Towards 1995, this backbone was the NSFNet, with 45 Mbps links

belonging to the United States government. In 1995 the NSFNet was shut down and the

Internet turned into being a completely decentralized network. Nowadays, the global

telecommunications companies provide network connectivity by means of their high-

speed links. Smaller companies buy the service from them, and resell it to the end

clients. This organization provides the Internet with certain hierarchical structure in

which some nodes are closer to the network center or backbone than others1.

Telecommunication companies in the different tiers have an autonomous internal

organization. From this autonomy, the concept of Autonomous System (AS) arises. An

Autonomous System of the Internet is a subnetwork which is under control of one or more

telecommunication companies, defining its own routing policy inside it. This means that

each Autonomous System controls the way in which routing is performed inside it, and

has a full vision of its own structure. The structure of an Autonomous System can be

1The concept of Tier, though rather diffuse in its definition, is related to this hierarchical structure.
It is usually stated that an Internet Tier-1 network is a subnetwork of the Internet backbone. Tier-2
networks connect to Tier-1s and use them to reach other parts of the network. At the same time, they
offer their service to the other tiers. Lastly, Tier-3 networks purchase the service from the Tiers-2s.
They also establish connections among them and are the usual Internet access providers for end users.

111
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described as a network graph formed by routers (vertices) connected by links (edges).

We can thus distinguish between two levels of study of the Internet as a complex

network:

• The Autonomous Systems level (AS), in which nodes identify Autonomous Systems,

and edges correspond to links between routers in different ASes, which arise from

commercial agreements between them.

• The inter-router level (IR) , of higher level of detail, formed by routers and their

links.

At both levels it is quite useful to understand the rapport between network structure

and function. Some of the most important aspects of Internet’s study are:

• Latency: It consists of the communication delay between two nodes in the network.

It is related to propagation times in physical links, but mostly to the processing

delay at the nodes, which is seriously affected by congestion.

• Bandwidth: It is the amount of information transmitted between two nodes by

unit of time. Though it depends on the physical capacity of the links (which gets

higher and higher as new technologies develop), it is also enormously affected by

congestion.

• Robustness or resilience: It is the network capacity of tolerating a local failure

without serious effects on its global operation. A fundamental concept related to

robustness is redundancy, which is close to network connectivity, i.e., the multiplic-

ity of paths between the nodes.

• Topology: The Internet is a complex system. It presents scale-free distributions

and emergent behavior and it lacks of centralized control. In particular, the Inter-

net seems to be designed for maximizing fault tolerance (as the HOT mechanism

suggests) and information flow [126].

As we see, the Internet’s topology and its constitution as a complex system affect its

congestion and robustness. It is thus important to know the structure of the Internet

graph.

But the Internet is a dynamical network, and it is impossible to get a complete

snapshot of it. As it is not a centralized system either, no institution comes to have a

global register of its topology. Because of this, one of the initial problems in Internet’s

study was the network exploration.
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Internet explorations Nowadays, a couple of institutions perform this task. We shall

work with:

• CAIDA Association2: Explorations performed by the CAIDA association consist

of sending IP packets (called probes) from sites connected to the network (the

monitors) towards different destinations. As IP routing gives some information on

the path traversed by the packets, it is possible to use this information in order

to partially reconstruct the Internet graph. Up to now (July 2013) the system has

about 80 monitors around the world.

• DIMES Project3: It is a distributed system composed of nodes which voluntarily

cooperate. From each node, IP packets are sent with a low frequency. Up to now

(July 2013) it counts about 400 active agents, most of them in the United States.

• Route Views Project4: Whereas the previous methods send active probes, this

project performs passive measurements: it observes the BGP routing tables from

some AS border routers. As BGP stores the full path to reach other ASes, it is

possible to reconstruct the AS level topology of the Internet from these tables.

However, this method is biased as some routes between ASes are hidden (due to

private policies or agreements).

CAIDA and DIMES only provide information on the Internet router-level. But, as

the routers are identified by IP addresses which are publicly associated to the ASes, it is

possible to deduce the AS-level graph from the router-level one. In RouteViews, instead,

only an AS-level vision is provided, because the BGP tables only route between ASes.

Before these projects, the first works on Internet topology just observed a couple of

BGP tables. This is the case of Govindan and Reddy’s exploration [82] in 1997. In

this work, the authors showed that, despite the Internet’s growth during those years,

the diameter was quite stable. In 1998, Pansiot and Grad reconstructed the router-level

graph after sending IP packets among 11 routers in different parts of the world [124].

One year later, Govindan and Tangmunarunkit constructed a much more complete map

by exploiting the source-routing option of the IP protocol [83].

In 1999 Faloutsos et al. presented their well-known article showing the existence of

power-laws in some distributions of the Internet graph, as the vertex degree distribution

and the distance distribution [66]. In order to obtain these results, they analyzed some

2http://www.caida.org/home/ [34].
3http://www.netdimes.org/new/ [56].
4http://www.routeviews.org/ [150].

http://www.caida.org/home/
http://www.netdimes.org/new/
http://www.routeviews.org/
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BGP tables provided by the NLANR5 and by the router-level exploration by Pansiot

and Grad [124].

The work by Faloutsos et al. had great impact. Pastor-Satorras et al. confirmed the

scale-free distributions observed in it, but they also detected a disassortative behavior

of the vertex degree distribution at the Autonomous Systems level [125]6. This result

is tightly related to the Internet’s structure: as Catanzaro et al. point out, combining

scale-free distributions with disassortative behavior avoids the obtention of a self-similar

structure, producing a hierarchical one, instead. The hierarchical structure of the Inter-

net is formed by hubs (densely connected nodes) which also connect to other hubs, and

peripheral nodes which connect among them by using the hubs.

This hierarchical structure of the Internet at the AS-level is part of some conceptual

models like the jellyfish by Siganos et al. (2006) [145] and the MEDUSA by Carmi et

al. (2007) [38]. Both of them model the network with a layered structure. The jellyfish

model is stricter regarding the edge-density inside layers: they must constitute cliques

or k-plexes (see their definition in Figure 3.1). The MEDUSA model, instead, is inspired

in the k-core decomposition, introduced in Section 2.1.3.4.

The k-core decomposition is a quite useful tool for studying Internet’s structure.

Alvarez-Hamelin et al. [7] showed that the k-cores of the Internet preserve the scale-

free behavior of the complete network: e.g., when observing the degree distribution

inside a k-core, a power-law is found with the same exponent as the one of the whole

network. The same results were obtained for the neighbor degree distribution and the

vertex clustering coefficient as a function of degree. Lastly, the authors also found a

disassortative behavior.

The k-cores are tightly related to connectivity. The works by Carmi et al. (2006) [37]

and Alvarez-Hamelin et al. (2008) [7] empirically showed that the k-cores in the Internet

AS-level graph are k-connected.

Our contribution in this chapter is to define sufficient conditions for guaranteeing the

core-connectivity of a network, defined as the k-edge-connectivity of each k-core. We

will show that these conditions are satisfied in the AS-level Internet graphs. The results

of this work are published in [6].

5National Laboratory for Advanced Network Research. The project which funded the Laboratory
ended in 2006, its resources being transferred to the CAIDA project.

6The data analyzed by Pastor-Satorras et al. were also provided by NLANR.
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4.2 Connectivity estimation using k-cores

Let us recall that the edge-connectivity of a graph G, κ′(G), is the minimum number of

edges to be removed for obtaining a disconnected graph, and it equals the capacity of

the minimum edge-cut (see Chapter 2, Section 2.1.2.2). A graph G is k-edge-connected

when κ′(G) ≥ k. Also, if G is k-edge-connected, then at least k edge-disjoint paths exist

between any pair of vertices in G.

4.2.1 Formalization

As a first step, we shall introduce an expansion theorem about distance:

4.2.1.1 An expansion theorem

Given a simple graph G, we shall define the distance between a vertex x ∈ V (G) and a

subset A ⊂ V (G), dG(x,A), as the minimum among all distances between v and vertices

in A. In other words, dG(x,A) is the distance between x and its closest vertex in A.

In this theorem we shall consider two non-empty disjoint subsets of V (G):(Fig.4.1.a) Q and C.

Let G′ be the graph induced by C ′ = Q ∪ C, denoted as G′ = G[C ′]7. We define the

contracted distance for vertices(Fig.4.1.b)

(Fig.4.1.c)

x, y ∈ Q as:

dC′/C(x, y) = min{dG′[Q](x, y), dG′(x,C) + dG′(y, C)} ,

and for vertices(Fig.4.1.d)

(Fig.4.1.e)

x ∈ C ′, y ∈ C as:

dC′/C(x, y) = dC′/C(y, x) = dG′(x,C) .

With these definitions, our notion of contracted distance is defined for every pair of

vertices in C ′8.

We also define the contracted distance between a vertex x ∈ C ′ and a subset A ⊂ C ′,

as:

dC′/C(x,A) = min
a∈A

dC′/C(x, a) .

Lastly, we introduce the notion of(Fig.4.1.f) contracted diameter of G′ = G[C ′] with respect to C

as

diamC′/C = max
x,y∈C′

dC′/C(x, y) .

7C will later represent a more central k-core which will provide connectivity to Q.
8Its designation as contracted distance can be understood as the usual distance G′ considering that

the set C collapses into a unique vertex, which is connected to those vertices in Q which were previously
neighbors of some vertex in C.



116 CHAPTER 4. CONNECTIVITY IN THE INTERNET

(a) A graph G′, induced by C ′ = C ∪Q. (b) Two vertices in Q whose contracted
distance is 2.

(c) Two vertices in Q whose contracted dis-
tance is 1.

(d) The contracted distance between the
black vertex and any vertex in C is 2.

(e) The contracted distance between ver-
tices in C is always 0.

(f) The contracted diameter of G′ is 3.

Figure 4.1: The notion of contracted distance.

With these definitions, it holds that if dC′/C(x, y) = 2 for some vertex pair x, y ∈ C ′,

then there exists some z ∈ C ′ such that dC′/C(x, z) = dC′/C(z, y) = 1.
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(a) The border set ∂1Q. (b) The border set ∂2Q.

Figure 4.2: Border sets in Q.

We shall also use the following notation:9

∂jQ = {x ∈ Q : |[x,C]| ≥ j}

∂̄jQ = {x ∈ Q : |[x,C]| < j} = Q \ ∂jQ .

(Fig.4.2.a)

(Fig.4.2.b)

These nested sets ∂jQ organize the border vertices in Q according to the number of

connections they have with C.

Lastly, we shall consider:

ΦC′/C =
∑
x∈Q

min{max{1, |[x, ∂̄2Q]|}, |[x,C]|}

Now we are ready for formulating our theorem.

Theorem 1. Given a simple graph G′ such that V (G′) = C ′ and C ⊂ C ′, if diamC′/C ≤
2, then for every edge-cut [S, S̄] in G′ such that C ⊂ S it holds that:

1. If maxs̄∈S̄ dC′/C(s̄, S) = 1, then |[S, S̄]| ≥ maxs̄∈S̄ d(s̄).

2. If maxs̄∈S̄ dC′/C(s̄, S) = 1, then |[S, S̄]| ≥ |S̄|.

3. If maxs̄∈S̄ dC′/C(s̄, S) = 2, then |S̄| > mins̄∈S̄ d(s̄).

4. If maxs̄∈S̄ dC′/C(s̄, S) = 2, then maxs∈S dC′/C(s, S̄) = 1.

5. If maxs∈S∩Q dC′/C(s, S̄) = 1, then |[S ∩Q, S̄]| ≥ maxs∈S∩Q(d(s)− dC(s)).10

6. If maxs∈S∩Q dC′/C(s, S̄) = 1, then |[S ∩Q, S̄]| ≥ |S ∩Q|.
9We shall commit a small abuse of notation in writing |[x,C]| instead of |[{x}, C]|.

10Our notation dC(s) denotes the internal degree of s in C, according to the notation introduced for
community structure in Chapter 3. It equals the number of edges going from s to vertices in C.
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Proof.

1. (Fig.4.3.a)

(Fig.4.3.b)

Consider some s̄ ∈ S̄. We split s̄’s degree into two components: dS(s̄) = |[s̄, S]| and

dS̄(s̄) = |[s̄, S̄]|. For each one of s̄’s neighbors in S, the edge-cut |[S, S̄]| is increased

by 1. Now, for each one of s̄’s neighbors in S̄ the edge-cut is also increased by 1, as

its contracted distance to S is 1 (which means that it must have an edge to some

vertex in S). Then: |[S, S̄] ≥ dS(s̄) + dS̄(s̄) = d(s̄). As this holds for any s̄ ∈ S̄,

we have that |[S, S̄]| ≥ maxs̄∈S̄ d(s̄)

2. (Fig.4.3.c)This follows immediately if we note that for each s̄ ∈ S̄ there exists at least one

edge to S, and this edge increases the edge-cut [S, S̄] by 1.

3. (Fig.4.3.d)

(Fig.4.3.e)

In this case, there exists at least one vertex s̄ ∈ S̄ without any edge to S. For this

vertex, s̄, it holds that dS̄(s̄) = d(s̄). Then: |S̄| ≥ d(s̄) + 1 > mins̄∈S̄ d(s̄).

4. (Fig.4.3.f)Following the reasoning in the previous item, if s̄ does not have any edge to S then

the minimum path to reach s̄ from any vertex s ∈ S has length 2 (because the

contracted diameter is less than or equal to 2) and the halfway vertex must belong

to S̄. Then, d(s, S̄) = 1.

5. If vertices in S which belong to Q have at least one edge to S̄, then using an

argument similar to that in item 1, we have that for each s ∈ S ∩ Q the edges

which do not arrive to C will arrive to S̄ or either to other neighbors in S ∩ Q,

which also have at least one edge to S̄. Then, d(s) − dC(s) is a lower bound for

|[S ∩Q, S̄]|.

6. As in item 2, this is immediate if we observe that for each s ∈ S ∩ Q there exists

at least one edge to S̄.
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(a) A graph G′, induced by C ′ = C ∪ Q,
whose contracted diameter is 2, and an
edge-cut [S, S̄] such that C ⊂ S. For every
s̄ ∈ S̄ it holds that dC′/C(s̄, S) = 1.

(b) Item 1. s̄’s degree is a lower bound for
|[S, S̄]|.

(c) Item 2. S̄’s cardinal is also a lower
bound for |[S, S̄]|.

(d) Here we modify some connections of
the vertices in Q. The contracted diameter
is still 2, but now we have some vertices in
S̄ without any edge to S. For every s̄ ∈ S̄
it holds that dC′/C(s̄, S) ≤ 2.

(e) Item 3. s̄ does not have any edge to S.
Then, s̄’s degree plus 1 is a lower bound
for S̄’s cardinal.

(f) Item 4. Every vertex S is at a con-
tracted distance of 2 from s̄. Then, every
vertex in S is at a contracted distance of 1
from S̄.

Figure 4.3: Illustration of Theorem 1.



120 CHAPTER 4. CONNECTIVITY IN THE INTERNET

Corollary 1. Let us assume that in addition to the hypotheses of Theorem 1 it holds

that

|[S, S̄]| < min
v∈Q

d(v) .

Then:

1. maxs̄∈S̄ dC′/C(s̄, S) = 2.

2. maxs∈S dC′/C(s, S̄) = 1.

3. |[C, S̄]| ≥ 1.

4. |S ∩Q| < |[S, S̄]| < minv∈Q d(v) < |S̄|.

5. S ∩Q ⊂ ∂2Q or, which is the same, ∂̄2Q ⊂ S̄.

6. ΦC′/C ≤ |[S, S̄]|.

Proof.

1. (Fig.4.4.a)

(Fig.4.4.b)

This is a consequence of Item 1 in Theorem 1. Otherwise, vertices in S̄ would have

an edge in the edge cut, and its capacity would be greater than or equal to the

degree of each vertex s̄.

2. (Fig.4.4.c)This is a consequence of Item 4 in Theorem 1 and our new hypothesis.

3. (Fig.4.4.d)Otherwise, every vertex in s̄ ∈ S̄ would have an edge to S ∩Q, and it would follow

that |[S, S̄]| ≥ d(s̄).

4. From Items 3 and 4 the first inequality follows. The second one is just the hypoth-

esis of this Corollary, and the third one comes from Item 3 in Theorem 1.

5. From Item 5 in Theorem 1 and Item 3 in this Corollary, it follows that:

|[S, S̄]| = |[S ∩Q, S̄]|+ |[C, S̄]| > max
s∈S∩Q

(d(s)− dC(s))

Then, for every s ∈ S ∩Q, our hypothesis implies that:

d(s) > |[S, S̄]| > (d(s)− dC(s))

from where it follows that dC(s) ≥ 2, and thus we conclude that every vertex in

S ∩Q belongs to the border set ∂2Q.
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(a) A graph G′, induced by C ′ = C ∪ Q,
with contracted diameter 2, and an edge-
cut [S, S̄] such that C ⊂ S. The additional
hypothesis |[S, S̄]| < minv∈Q d(v) holds.

(b) Item 1. d(s̄, S) = 2.

(c) Item 2. Vertices in S ∩ Q must have
some edge to S̄.

(d) Item 3. The capacity of the edge-cut
[C, S̄] is at least 1.

Figure 4.4: Illustration of Corollary 1.

6. As ∂̄2Q ⊂ S̄, for every s ∈ S ∩Q it holds that:

|[s, S̄]| ≥ max{1, |[s, ∂̄2Q]|}

whereas for s̄ ∈ S̄ it holds that |[s̄, S]| ≥ |[s̄, C]|. Then:

|[S, S̄]| = |[S ∩Q, S̄]|+ |[C, S̄]|

≥
∑
s∈S∩Q

max{1, |[s, ∂̄2Q]|}+
∑
s̄∈S̄

|[s̄, C]|

≥ ΦC′/C
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Now we shall use Theorem 1 and Corollary 1 in order to establish a result on the

k-edge connectivity of a graph G′.

Corollary 2. Let k ≤ dmin(G′). If it holds that:

1. G′[C] is dmin(G′)-edge-connected

2. diamC′/C ≤ 2

Then any of the following conditions implies that G′ is k-edge-connected:

1. ΦC′/C ≥ k

2. |∂1Q| ≥ k

3. Q = ∂1Q

Proof. Let [S, S̄] be an edge-cut in G′. We will show that, under the 2 hypothesis and

any of the 3 alternatives, it holds that |[S, S̄]| ≥ k.

As a first case, let us suppose that C is split by the edge-cut, i.e.: S ∩ C 6= ∅ and

S̄ ∩C 6= ∅. Then the edge-cut [S ∩C, S̄ ∩C] is included in ⊂ [S, S̄]. But, as we assumed

that G′[C] is k-edge-connected, it follows that:

|[S, S̄]| ≥ |[S ∩ C, S̄ ∩ C]| ≥ k

Then, let us suppose that C ⊂ S (without loss of generality; just for using the same

notation as in our previous results). If it held that |[S, S̄]| < k, then as k ≤ dmin(G′) ≤
minv∈Q d(v), the first hypothesis in Corollary 1 would hold.

Nonetheless, the first of the conditions contradicts Item 6 in Corollary 1.

If v ∈ ∂1Q instead, then v has some edge to C. Then, v increases ΦC′/C by at least 1.

Now the second of our conditions implies the first one which, as we showed, contradicts

the Corollary.

Lastly, if Q = ∂1Q then every vertex in Q will have some edge to C, which contradicts

Item 1 in the Corollary.

Notation. In order to summarize the three conditions of Corollary 2, we shall use the

following notation:

ΨC′/C(k) = max{ΦC′/C − k, |∂1Q| − k, |∂1Q| − |Q|}, for k ≤ dmin(G′) .

Then, the 3 conditions can be summarized as: ΨC′/C(k) ≥ 0.
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Observation: Our Corollary 2 is closely related to Plesńık’s theorem [127], which

states that in simple graphs of diameter 2 the edge-connectivity is equal to the minimum

degree. In fact, the condition of having a contracted diameter of 2 assures that the

graph obtained from G′ by contracting C into a vertex would be k-edge connected for

k ≤ dmin(G′). However, this is not enough for guaranteeing k-edge-connectivity, and

some of our 3 additional conditions is required.

4.2.1.2 Strict-sense and wide-sense edge-connectivity

Here we expand our notion of edge-connectivity for subgraphs induced by subsets A ⊂
V (G).

We shall say that an induced subgraph G[A] is k-edge-connected in the strict sense

just when G[A] is k-edge-connected, i.e., when every edge-cut in G[A] has at least k

edges or, which is the same, at least k pairwise edge-disjoint paths exist for any vertex

pair u, v in G[A].

We shall say that an induced subgraph G[A] is k-edge-connected in the wide sense

when every edge-cut [X, X̄] in G which splits the A set –i.e., such that X ∩ A 6= ∅ and

X̄ ∩ A 6= ∅– has at least k edges. This is the same as requiring the existence in the full

graph G of at least k pairwise edge-disjoint paths for any vertex pair u, v in A.

It immediately follows that if G[A] is k-edge-connected in the strict sense, then it is

also k-edge-connected in the wide sense.

4.2.1.3 Building core-connected sets

We will now relate our notions of edge-connectivity in the strict and wide sense with the

k-core decomposition. Let us recall that a k-core is an induced subgraph with minimum

degree k, which is maximal with respect to this property (see Section 2.1.3.4). Our

hypothesis here is that the k-cores are usually k-edge-connected. We shall design an

algorithm for traversing the k-cores, from the most central to the most peripheral ones.

This algorithm constructs a subset C ⊂ V (G) such that the k-cores of the subgraph

induced by C are k-edge-connected in the strict (wide) sense. We shall call this property

as core-connectivity in the strict (wide) sense:

Definition. A graph is core-connected in the strict (wide) sense when all of its k-cores

are k-edge-connected in the strict (wide) sense.

We expect the whole graph G to verify core-connectivity. But when this is not pos-

sible, the algorithm will extract a core-connected induced subgraph as large as possible.
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Figure 4.5: k-shells and clusters in a graph. The graph in this example has core number
5. The central k-core in included inside the 4-core (blue+light blue). Vertices belonging
to the 4-core but not to the 5-core form the 4-shell (light blue). The 4-shell has 5
connected components (clusters). The 4-core is contained inside the 3-core (blue+light
blue+green). The 3-shell (green) is composed of 4 clusters.

Core-connectivity in the strict sense The algorithm needs an initial subset with

large edge-connectivity, so it analyzes the more central k-core, and verifies the diameter-2

condition of Plesńık’s theorem. In order to verify this, the kmax-core must have a single

connected component. Otherwise, each component will be considered separately.

If no connected component is found which verifies the diameter-2 condition in the

kmax-core, then the algorithm advances to the next core, and considers the vertices in

the (kmax − 1)-core which do not belong to the kmax-core. This “crust” of a k-core is

called a k-shell (see Figure 4.5). The k-shell is the subgraph induced by the vertices with

shell index equal to k. Each k-shell may be composed of several connected components,

which are called clusters. The algorithm processes each k-shell until finding a first cluster

verifying the diameter-2 condition, and with minimum degree at least k. The vertices in

this cluster will form the initial C set. As the cluster is k-edge-connected for k equal to

its k-shell, the graph G[C] will be core-connected.

Once this first stage is over, the algorithm tries to append other clusters to C11. It

begins with the k-shell which immediately follows the one of the first cluster, and its

checks the conditions in Corollary 2 for each cluster in this k-shell. The cluster will

play the role of Q in the Theorem, whereas the C set satisfies the required hypothesis

of k-edge-connectivity12. In order to apply the Theorem in G[C ′], with C ′ = C ∩Q, the

11Observe that, as new vertices are added into C, the edge-connectivity of G[C] will decrease, but
G[C] will always be core-connected.

12As C is core-connected and its minimum degree is at least the actual k, then C es k-edge-connected.
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Algorithm 3: Core-connectivity in the strict sense

Input: Sk[G] = {Qk1, Qk2, ..., QkMk
}, the k-shells of G (from 1 to kmax), split into

their connected components (clusters)
Output: C ⊂ V , core-connected in the strict sense

3.1 C ← ∅
3.2 k ← kmax
3.3 begin
3.4 while C = ∅ and k ≥ 1 do
3.5 if there exists some Q ∈ Sk[G] satisfying diam(G[Q]) ≤ 2 and

dmin(G[Q]) ≥ k then
3.6 C ← C ∪Q
3.7 end
3.8 k ← k − 1

3.9 end
3.10 while k ≥ 2 do

3.11 while there exists some Q ∈ Sk[G] satisfying:

{
diamC∪Q/C ≤ 2
ΨC∪Q/C(k) ≥ 0

]
do

3.12 C ← C ∪Q
3.13 Sk[G]← Sk[G] \Q
3.14 end
3.15 k ← k − 1

3.16 end
3.17 for each Q ∈ S1[G] do
3.18 if |∂1Q| ≥ 1 then
3.19 C ← C ∪Q
3.20 end

3.21 end

3.22 end

algorithm checks the 3 conditions in Corollary 2. If any of them holds, then the cluster

is added to C13.

The procedure traverses all the k-shells considering each cluster, until processing the

2-layer. For the 1-layer, our conditions are unnatural, and we simply have to verify that

the clusters in the 1-layer have at least one edge to C.

The final result is a subgraph G[C] satisfying core-connectivity, i.e., whose k-cores

are k-edge-connected. The computational time complexity of the algorithm is O(e(G))

(see [6]).

The full procedure is described in Algorithm 3.

13When Q is added, C will have minimum degree k and will be k-core-connected. But as the (k + 1)-
core of C does not include any of the vertices in Q, then its keeps its previous edge-connectivity value.
Thus, C is still core-connected.
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Core-connectivity in the wide sense This procedure is shown in Algorithm 4.

Now the algorithm needs a buffer B in which we keep those clusters which could not

be added to C. If any time later some cluster verifies the conditions in line 4.15, then

the cluster is added to a set D. These belatedly added clusters have a connectivity in

G[C ∪D] which is smaller than their shell index. However, the value of k of the step in

which they were added assures the k-edge-connectivity of G[C∪D], which is the required

hypothesis on G[C∪D] in order to apply the theorem. So, the vertices in D are not part

of the core-connected set (only those in C are), but they can be used by other clusters

in order to establish their paths. The connectivity thus obtained is a connectivity in the

wide sense, as the paths connecting vertices in C may use vertices in the D set.

4.2.2 Results and data analysis

We applied our algorithms to the analysis of core-connectivity in Internet AS-level

graphs. The data was obtained from explorations by CAIDA and DIMES, and are

summarized in Table 4.1.

In Table 4.2 we show the number of nodes of the core-connected subgraphs extracted

from both algorithms. We observe that most vertices belong to the core-connected

subgraph. For each pair of vertices in this subgraph we can assure a minimum value of

edge-connectivity as the minimum between the shell indexes of the vertices.

We also compared our lower bound for edge-connectivity with the real edge-connectivity

in the graph. These results are shown in Figures 4.7 and 4.8. In these pictures, every

pair of vertices is considered. The pairs are organized on the x-axis according to min-

imum shell index. For each value of minimum shell index, the segment on the y-axis

shows the mean and standard deviation for the edge-connectivity of pairs with such

value of minimum shell index. Edge-connectivity is computed in two fashions: as the

edge-connectivity inside the deepest k-core containing both vertices (which we call edge-

connectivity through the core) and as the edge-connectivity in the full graph. For both

cases, we also show the curve f(x) = x corresponding to the edge-connectivity lower

bound guaranteed by our algorithm for those vertices belonging to the C set. We con-

clude that our lower bound is quite close to the edge-connectivity through the core.

The computation of the real edge-connectivity was made using a Gomory-Hu tree of

the full graph or either of each k-core (in the case of the edge-connectivity through the

core). The procedure is briefly described in the next lines.
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4.2.2.1 Gomory-Hu trees

Edge-connectivity in graphs is related to the minimum edge-cut by Menger’s theorem

for edges (see page 30). This implies that the edge-connectivity can be computed using

the maximum flow algorithm by Ford-Fulkerson, with unitary weights in the edges. By

recursively applying this algorithm, Gomory and Hu showed that it is possible to build

an edge-weighted tree containing all the information on connectivity in the graph [80].

Figure 4.6 shows a Gomory-Hu tree for a simple graph. The edge-connectivity be-

tween any two vertices v and w equals the minimum among the capacities of the edges

in the path which connects both vertices.

Figure 4.6: Computing edge-connectivity with Gomory-Hu trees. On the left, we show a
simple graph. On the right, an associated Gomory-Hu tree. This tree contains all the
information on edge-connectivity for every pair of vertices v and w. In particular, the
minimum among the capacities of the edges equals the edge-connectivity of the graph.
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Figure 4.7: Edge-connectivity in the AS-CAIDA 2013 network. The figure on the left
shows the edge-connectivity between every vertex pair {u, v} in the network, as a function
of minimum shell index, min{cK(u), cK(v)}. On the right we plot the edge-connectivity
through the core, i.e., the edge-connectivity inside the deepest core containing both
vertices. The continuous line represents the function f(x) = x. Vertical segments
represent mean values and standard deviation. We observe that the minimum shell index
is quite close to the edge-connectivity through the core. The real edge-connectivity was
computed by previously constructing the Gomory-Hu tree of the graph [80].
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Figure 4.8: Edge-connectivity in the AS-DIMES 2011 network. Edge-connectivity (Left)
and edge-connectivity through the core (Right) for every vertex pair {u, v} in the net-
work, as a function of the minimum shell index of the pair, min{cK(u), cK(v)}. For more
details, see the caption on Figure 4.7.
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Algorithm 4: Core-connectivity in the wide sense

Input: Sk[G] = {Qk1, Qk2, ..., QkMk
}, the k-shells of G (from 1 to kmax), split into

their connected components (clusters)
Output: C ⊂ V , core-connected in the wide sense

4.1 C ← ∅
4.2 D ← ∅
4.3 B← ∅
4.4 k ← kmax
4.5 begin
4.6 while C = ∅ and k ≥ 2 do
4.7 if there exists some Q ∈ Sk[G] satisfying diam(G[Q]) ≤ 2 and

dmin(G[Q]) ≥ k then
4.8 C ← C ∪Q
4.9 Sk[G]← Sk[G] \Q

4.10 end
4.11 B← B ∪ Sk[G]
4.12 k ← k − 1

4.13 end
4.14 while k ≥ 2 do

4.15 while there exists some Q′ ∈ B satisfying:

{
diam(C∪D∪Q′)/(C∪D) ≤ 2
Ψ(C∪D∪Q′)/(C∪D)(k) ≥ 0

]
do

4.16 D ← D ∪Q′
4.17 B← B \ {Q′}
4.18 end

4.19 while there exists some Q ∈ Sk[G] satisfying:

{
diam(C∪D∪Q)/(C∪D) ≤ 2
Ψ(C∪D∪Q)/(C∪D)(k) ≥ 0

]
do

4.20 C ← C ∪Q
4.21 Sk[G]← Sk[G] \ {Q}
4.22 end
4.23 B← B ∪ Sk[G]
4.24 k ← k − 1

4.25 end
4.26 for each Q ∈ S1[G] do
4.27 if |∂1Q| ≥ 1 then
4.28 C ← C ∪Q
4.29 end

4.30 end

4.31 end
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AS-CAIDA

2009

AS-CAIDA

2011

AS-CAIDA

2013

AS-DIMES

2011

n(G) 16117 19895 23779 26083

e(G) 32847 44560 54752 83305

d 4.08 4.48 4.61 6.39

dmax 2012 2465 2818 4517

kmax 16 20 24 35

cc(G) 0.013 0.014 0.016 0.015

Table 4.1: List of analyzed Internet graphs. For more details on the statistics of these
graphs, consult Appendix B.

|V (G)| |V (G) \ Cstrict| |V (G) \ Cwide|

AS-CAIDA 2009 16117 145 94

AS-CAIDA 2011 19895 111 72

AS-CAIDA 2013 23779 28 24

AS-DIMES 2011 26083 45 34

Table 4.2: Core-connectivity of Internet graphs. Our algorithm obtains a core-connected
subgraph G[C]. Core-connectivity implies that every k-core in this subgraph is k-edge
connected. This table shows in its second column the number of vertices in the explo-
ration graph. The next columns represent the number of vertices which could not be
added into the core-connected graph in the strict sense and in the wide sense, respec-
tively.
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4.3 Visualizing Internet connectivity

We used the visualization tool LaNet-vi [5] in order to visualize the k-core decomposition

of Internet graphs. From version 2.2.0 onwards, LaNet-vi incorporates an option for

finding core-connected subgraphs in the strict sense and in the wide sense, using the

algorithms presented here.

Figures 4.9 and 4.10 show the k-core decomposition of the AS-CAIDA 2011 and

AS-DIMES 2011 networks. Vertices which do not belong to the core-connected graph

in the strict sense are drawn in black. We observe just a few of them, in the peripheral

layers.

Figure 4.9: k-core decomposition and core-connected set in the strict sense for the
AS-CAIDA 2011 network. The scale on the left represents vertex degree, and the one
on the right represents its shell index.

These pictures also reveal that the AS-level of the Internet has a high core number,

which increases year after year. Between the explorations in 2009 and 2013 the core

number increased from 16 to 24. Figure 4.11 shows the evolution of the maximum core

of the Internet between 2009 and 2013. The labels show that most of the ASes which

were in the center of the network in 2009 remain there in 2013, but many new ASes were

added. The ASes in this core are the most important providers of connectivity in the

Internet.

Lastly, we observe that the explorations by DIMES have more detail than those by
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Figure 4.10: k-core decomposition and core-connected set in the strict sense for the
AS-DIMES 2011 network. The scale on the left represents vertex degree, and the one on
the right represents its shell index.

CAIDA. In 2011 we find a core number of 35, in comparison to that of 20 in CAIDA.

The k-edge-connectivity is still verified, except for a few vertices.

Throughout this chapter, we have shown that it is possible to obtain lower bounds for

edge-connectivity in a time linear with the graph size. In the AS-level Internet graphs,

we showed that these lower bounds are closely adjusted by the edge connectivity through

the core.
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Figure 4.11: Evolution of the central core of the Internet in CAIDA between 2009 (above)
and 2013 (below). The name assignment for the ASes was done using data from 2013.
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Chapter 5

Clustering in Complex Networks

Complex systems lie between order and disorder. Because of this, complex systems

usually show small-world behavior and scale-free distributions (which are typical of dis-

ordered systems) at the same time as three point correlations, which are characteristic

of ordered systems.

The notion of order is typically related to the existence of a metric structure in the

network. This structure can be captured by the clustering coefficient (see page 33) which

is the smallest network motif encoding the triangle inequality. The clustering coefficient

is quite extended for studying order in complex systems.

In this chapter, we shall discuss some existent clustered network models, and using

the k-dense decomposition we shall show that some of them are better adjusted to real

networks than others.

One of the aims of this chapter is to highlight the importance of visualization as a

tool for studying complex systems. We developed an algorithm for visualizing the k-

dense decomposition as a variation of the k-core decomposition within the LaNet-vi 3.0

software [5]. As we will show, some of the differences among the models can be observed

at a glance in the pictures.

The results described here are published in [50].

5.1 Introduction

Classical random graph models as the Erdös-Rényi and its generalizations1 are un-

correlated, and the graphs obtained with them have a poor clustering coefficient. In

these models, vertex neighborhoods rather have a tree-like aspect, with scarce connec-

tions among neighbors. However, their advantage is their simplicity and mathematical

tractability.

1See Section 2.3.3.

135
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The first clustered network models tried to include correlations in a simple way, so

as to be able to compute their properties in the thermodynamic limit. The models

by Newman [118] (2009) and Gleeson [77] (2009), for example, perform what we call a

clique-based clustering (CB).

Gleeson’s model requires as input a joint distribution γ(c, k), defined as the probabil-

ity that a randomly chosen vertex has degree k and belongs to a clique of order c. Using

this distribution, a graph formed by cliques is constructed. These cliques are embedded

into a larger graph in which the cliques are just vertices. The connections among these

“super-vertices” are established as in the classical configuration model. By choosing an

appropriate distribution γ(c, k), we obtain a graph with expected degree distribution

p(k) and a certain average vertex clustering coefficient as a function of vertex degree.

These clique-based methods produce a modular structure formed by cliques, and they

represent a high ordering of the graph. However, it is possible build highly-clustered

graphs but with the minimal necessary correlation among edges. We call these meth-

ods as maximally random clustering (MR). The general model which we propose here is

based on a set of exponential random graphs. An exponential random graph under a set

of invariants is a random graph in which the probability distribution for the graph in-

stances is the one which maximizes the entropy, constrained to the expected value for the

invariants. In our particular case, the invariant is the vertex clustering coefficient distri-

bution, which we take from the real network that we are modeling. Thus, the probability

distribution for the random graph is represented by the following Hamiltonian:

H(G∗) =

k=dmax(G)∑
k=1,p(k)6=0

|cc∗(k)− cc(k)| ,

in which cc∗(k) is the average clustering coefficient for vertices of degree k in G∗, and

cc(k) is the average vertex clustering coefficient in the real network. The minimization

is performed with a simulated annealing procedure. The details about vertex rewiring

during this process can be found in [50].

Both types of methods (clique-based and maximally random clustering) are some-

how opposed to each other in the space of graphs with fixed degree distribution p(k) and

average clustering coefficient cc(k). We wonder which of them better represents real com-

plex networks. In order to answer this question, we shall use the k-dense decomposition

introduced in Section 2.1.3.5.
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5.2 Computing the k-dense decomposition

Let us recall that a k-dense is a maximal subgraph whose edges have multiplicity at least

k − 2. In order to compute the k-dense decomposition, we have developed an original

approach. In the original work by Saito et al. [140] each k-dense is obtained by successive

elimination of edges with multiplicity less than k−2. When each edge is eliminated, the

multiplicity of every adjacent edge must be updated. Here we speed up this update by

using a data structure which stores the triangles associated to each edge.

Our decomposition algorithm uses a hypergraph H which is constructed from the

original graph. A hypergraph is a generalization of the graph notion, in which each edge

is associated to a non-empty subset of the vertex set (whereas in a classical graph each

edge is associated to exactly two vertices). The hypergraph H will have one vertex for

each edge in the original graph. The edges in H will connect triples of vertices. Three

vertices in the hypergraph are connected if and only if the edges associated to those

vertices in the original graph form a triangle. In short words, in this hypergraph H each

original edge turns into a vertex, and each original triangle turns into an edge.

We have proved that the k-dense decomposition of the original graph is in a certain

way equivalent to the k-core decomposition of the hypergraph (see [50], Supplementary

Information). The vertex set of each k-core of the hypergraph equals the edge set of the

(k + 2)-dense of the graph. Figure 5.1 illustrates the procedure.

As the computational time complexity of the k-core decomposition is O(e(H)) and

the number of edges in H equals the number of triangles in G, we conclude that our

algorithm has a time complexity of the order of the number of triangles in G.

5.3 Visualizing clustering models

We analyzed 3 real networks of different type: an Internet exploration in the AS-level

obtained by CAIDA in 2009, the PGP trust network [25] and the metabolic network of

the bacteria E. Coli [144]. We computed the vertex degree distribution and the average

clustering coefficient as a function of vertex degree, and we used them for building

instances with the same graph order and size, using: (a) the clique-based procedure by

Gleeson [77]; and (b) our maximally random clustering model.

In the graph visualizations we use edge-multiplicity m instead of the dense index k.

A minimum edge-multiplicity m inside a k-dense implies a dense index of (m + 2). Or,

in other words, the edges in a k-dense with dense index k have a multiplicity at least

k − 2.

The pictures should be interpreted in the following way: each k-dense is plotted
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Figure 5.1: Procedure for computing the k-dense decomposition. In a first stage, the hy-
pergraph H is built. The vertex set in H is the edge set in the original graph, E(G). The
edge set T in H is the set of triangles in G. In a second stage, the k-core decomposition
of H is computed. Finally, each edge in G is assigned a dense index equal to the shell
index of its associated vertex in H.

inside a circular space, but the circle border is not drawn. As the k-dense may contain

several connected components, each connected component is observed as a circle inside

the space assigned to its k-dense.

When a k-dense contains many connected components but one of them is much larger

than the others, the small components lie around the central one. This is clearly the

case of the MR model of the PGP network.

When all the connected components are small, many small circles are observed inside

the circular space of the k-dense. This is the case of the CB model of the metabolic

network.

Now we describe each figure. For the Autonomous Systems network, the original

graph presents a hierarchical structure in which each k-dense contains only one connected

component. This fact is well reproduced by the MR model, whereas the CB model

produces a large number of small connected components inside each k-dense.

The PGP trust network is particularly interesting. As it is a social network, it
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combines a modular structure (revealed by the existence of many small connected com-

ponents inside the k-denses) and a hierarchical structure. The latter implies a large

number of radial edges among the k-denses. As a consequence, each k-dense has a main

connected component, which lies immersed in the main connected component of the

lower k-dense (the (k − 1)-dense). However, the CB model produces a flat modular

structure without any hierarchy. All the connected components are small.

Finally, in the metabolic network (much smaller than the previous ones) the original

graph has a clear hierarchical structure, typical of biological networks. But this structure

is not captured by the CB model which, once more, obtains a modular structure.

In summary, our visualizations have shown that the CB model does not appropriately

model those networks having a hierarchical structure.
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Figure 5.2: k-dense decomposition of the AS-level Internet graph. We show the original
network (Up), the one obtained with the maximally random clustering model (MR)
(Left) and the one obtained with the clique-based model (CB) (Right). The color scale
is determined by the dense number of the original network, which is 21. In both models,
those vertices with dense index equal to or greater than 21 are colored in red. The dense
numbers for the models are 27 (MR) and 58 (CB).
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Figure 5.3: k-dense decomposition of the PGP trust network. We show the original
network (Up), the one obtained with the maximally random clustering model (MR)
(Left) and the one obtained with the clique-based model (CB) (Right). The color scale
is determined by the dense number of the original network, which is 25. The dense
numbers for the models are 23 (MR) and 36 (CB).
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Figure 5.4: k-dense decomposition of the metabolic network of E. Coli. We show the
original network (Up), the one obtained with the maximally random clustering model
(MR) (Left) and the one obtained with the clique-based model (CB) (Right). The color
scale is determined by the dense number of the original network, which is 5. The dense
numbers for the models are 9 (MR) and 14 (CB).



Chapter 6

Conclusions

Throughout this dissertation we have studied some aspects of the combinatorial modeling

of complex systems, and we have presented some new models for characterizing complex

networks.

We have put special effort in the computational complexity of the models. In each

of our contributions we intended to provided scalable methods in order to apply them

in large scale networks.

The developed methods can be classified into three groups:

• The discovery of community structure.

• The characterization of some invariants of complex networks, as the edge-connectivity

and the clustering coefficient.

• Network visualization.

In Chapter 3 we characterized the community structure of complex networks. The

development of models of community structure is relevant for explaining collective be-

havior and predicting the constitution of affinity groups in social networks. It is also

used in biological networks for inferring functionality from structure. From among our

contributions here, we mention:

• A formalization of modularity, in which we concisely expressed the resolution

limit [33]. A similar formalization was later used for describing our growth pro-

cess [20].

• The proposition of a local method for community discovery. This method, based

on the growth process of a fitness function, can be applied to large scale networks.

We compared it against well-known methods for community discovery. We showed

that it solved the resolution limit problem. When compared against InfoMAP and
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LPM, whose results slightly ourperform ours, our method has a low and bounded

complexity.

• Study of method behavior. We showed that the growth process has a correct be-

havior in the thermodynamic limit when the vertices inside the community have a

typical mixing parameter. We optimized our algorithm and data structures in or-

der to obtain a time complexity of O (n(G) · dmax + e(G) · log(n(G))). We applied

the method in networks containing up to 5 million nodes. For many real networks

we obtained partitions in which the community size distributions adjust to a power

law, as expected [20].

In Chapter 4 we studied the Internet topology through the k-core decomposition,

and we performed a detailed analysis of the relation between the k-cores and the edge-

connectivity. Our fundamental contribution was to develop a low complexity algorithm

for guaranteeing a lower bound for edge-connectivity among the vertices. This algorithm

is based on the verification of simple conditions. We showed that these conditions hold

in almost every vertex of the AS-level Internet graphs. Obtaining these lower bounds for

connectivity in information flow networks like Internet is of practical relevance, because

it helps service providers guarantee some robustness or quality of service to final users.

Our algorithm for core-connectivity in the strict sense can obtain these bounds in a time

of O(e(G)) [6].

Finally, in Chapter 5 we studied some clustered network models and we compared

them using the k-dense decomposition. We proposed an efficient algorithm for computing

it, whose complexity is of the order of the number of triangles in the graph. We used

our visualization tool to show that clustering is better modeled by maximally random

clustering methods than by clique-based ones [50].

We have constantly emphasized on model visualization. We improved the LaNet-vi

visualization tool and added new functionality into it, like the k-dense decomposition and

the visualization of core-connectivity, together with some minor features. LaNet-vi was

extensively used in Chapter 4 to visualize the core-connected sets in the Internet graphs,

and also in Chapter 5 to compare clustering models using the k-dense decomposition.

All the developed methods are publicly available to the scientific community in the

following locations:

• CommUGP (local community discovery algorithm using a uniform growth process):

https://code.google.com/p/commugp/

• LaNet-vi (k-core and k-dense visualization, and computation of core-connected

sets): http://lanet-vi.fi.uba.ar/

https://code.google.com/p/commugp/
http://lanet-vi.fi.uba.ar/
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• SnailVis (community structure visualization): http://cnet.fi.uba.ar/mariano.

beiro/snailvis.tar.gz

• DeltaCom (greedy algorithm for modularity optimization): http://sourceforge.

net/projects/deltacom/

The results of our work were published in the following articles in international jour-

nals:

M.G. Beiró, J.R. Busch, S.P. Grynberg, and J.I. Alvarez-Hamelin. Obtaining com-

munities with a fitness growth process. Physica A: Statistical Mechanics and its Appli-

cations, 392(9):2278 – 2293, 2013.

J.I. Alvarez-Hamelin, M.G. Beiró, and J.R. Busch. Understanding edge connectivity

in the internet through core decomposition. Internet Mathematics, 7(1):45–66, 2011.

P. Colomer de Simón, M.A. Serrano, M.G. Beiró, J.I. Alvarez-Hamelin, and M. Boguñá.

Deciphering the global organization of clustering in real complex networks. Scientific

Reports, 3(2517), 2013.

Some results are included in the following articles:

J.R. Busch, M.G. Beiró, and J.E. Alvarez-Hamelin. On weakly optimal partitions in

modular networks. CoRR, abs/1008.3443, 2010.

M.G. Beiró, J.R. Busch, J.I. Alvarez-Hamelin. SnailVis: a paradigm to visualize

complex networks. Simposio Argentino de Tecnoloǵıa, 39o JAIIO (Jornadas Argentinas

de Informática e Investigación Operativa), Buenos Aires, 2010.

http://cnet.fi.uba.ar/mariano.beiro/snailvis.tar.gz
http://cnet.fi.uba.ar/mariano.beiro/snailvis.tar.gz
http://sourceforge.net/projects/deltacom/
http://sourceforge.net/projects/deltacom/
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Appendix A

Power Laws

In complex systems we usually find parameters whose probability distribution function

follows a law of the form f(x) ∝ x−α, which is usually called as a power-law. Unlike

other classical distributions as the binomial or normal distribution, power-laws have a

slow fall off for increasing values of the random variable. This gives rise to interesting

consequences, as a non-negligible probability concentration for large values of the random

variable, or the irrelevance of the mean as a sample estimator due to the large variance

value.

One of the first observers of this behavior is V.Pareto. When he studied the distribu-

tion of wealth in 1906, he observed that “the 80% of the Italian wealth was concentrated

on the 20% of the population”. This was is fact a consequence of a power-law in the

distribution of wealth. Power-laws are also found in population density in cities [116], in

earthquake magnitudes [88], in citations in scientific publications [55], or in the number

of hyperlinks in the web pages [3]. In complex systems, typical power-laws exponents lie

in the range 2 ≤ α ≤ 3 [116].

But many variables studied in complex systems take discrete values. This is the

case, for example, of the number of hyperlinks in web pages, the number of authors who

collaborate with a scientist, or the number of edges which meet in a network vertex (for

example, in a transport, communication, or social network; this quantity is known as

the node degree). In these cases, the variables are either modeled as random discrete

variables, or either a continuous approximation is made (which will be quite efficient when

the number of samples is large enough). We will start our discussion with this latter

case (i.e., of power-law variables with continuous distribution), and we shall introduce

discrete power-laws on a later section.
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A.1 Mathematical properties of continuous power

laws

We shall say that a continuous random variable X follows a power-law when its proba-

bility density function has the form

f(x) = Cx−α , x ≥ xmin > 0 ,

with α > 1. Its support must begin in some value xmin > 0 because x−α has a non-

integrable singularity at the origin1. The value for the constant C can be deduced from

the area-1 constraint for the probability density function:∫ ∞
xmin

Cx−α = 1→ C = (α− 1) · xα−1
min .

Power-laws have finite moments of order m only for m < α− 1. For example, in the

usual range 2 < α ≤ 3 the mean is finite but the variance is not. When the mean µ and

variance σ2 are finite, their values are:

µ =
(α− 1)

(α− 2)
· xmin σ2 =

(α− 1)

(α− 3)
· x2

min .

The tail distribution function for X also follows a power-law, but the exponent β differs

in 1 with respect to α:

G(x) = P [X > x] =

∫ ∞
x

Cx′−αdx′ =

(
x

xmin

)−(α−1)

=

(
x

xmin

)−β
, x ≥ xmin, β = α−1 .

The inverse tail distribution function G−1 for X is:

G−1(y) = xmin · y−1/β .

This last formula is particularly useful to generate X samples from samples of a uniform

U(0, 1) random variable.

Power-laws are usually drawn in the Cartesian plane with both edges in logarithmic

scale. Thus, calling y′ = log(y) and x′ = log(x), we have:

1Power-laws with exponents less than 1 also exist, but they are not relevant usually for the study of
complex systems. In these cases, the function x−α has a non-integrable singularity at infinity instead
of 0.
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y′ = log(y)

= log(f(x))

= log(C · x−α)

= log(C)− α log(x)

= log(C)− αx′ .

In the log-log scale, a power-law will be observed as a decreasing line with slope −α.

Figure A.1 illustrates the situation with a power-law with exponent α = 3 drawn in a

linear scale and in a log-log scale.
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Figure A.1: Power laws. A power-law with exponent α = 3 and xmin = 1, drawn in a
linear scale (left) and in a log-log scale (right).

A.2 Fitting a continuous power law from empirical

data

Power-laws are detected by taking a certain number of samples from the system

under study. Because of this, we shall address the problem of power-law adjustment

from empirical data.

Given a random sample (X1, X2, ..., XN) of a continuous random variable X which

a priori follows a power-law, we can approximate the probability density function with

a histogram. A histogram is a set of points (xi, yi) obtained from the following binning

procedure:
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1. We define a sequence (mi) containing M consecutive intervals or bins of the form

[ai, bi), with i = 0, 1, ...,M − 1, such that:

(a) a0 = xmin

(b) ai = bi−1 for i = 1, 2, ...,M − 1

(c) bM−1 = xmax .

2. We count the number of samples falling in each interval: Si =
∑N

1 1{Xj ∈ mi}.

3. For each interval we define a point in the histogram, (xi, yi) =
(
ai,

Si
N ·(bi−ai)

)
.

One property of this histogram is that the yi values represent the probability of one

randomly chosen sample belonging to the mi interval, normalized by the interval length.

In this way, the yi values represent a rectangle approximation of the probability density

function. When constructing the histogram we must choose a subdivision of the random

variable support into intervals. In other contexts a division into equal sized intervals

is used, or either the intervals are chosen such that each interval contains the same

number of samples. However, in power-law distributions (and heavy-tailed distributions

in general) a binning with equal sized intervals presents two problems: (i) it introduces

much noise for large values of the random variable; and (ii) when transformed into a log-

log scale, the histogram bins cumulate towards the right of the plot, and the small values

of the variable (which are the most frequent ones) fall into the same bin. It is better

then to use a logarithmic binning. Thus, the bins will be equal sized when visualized in

the logarithmic scale.

Logarithmic binning. The logarithmic binning is constructed in the following way:

a0 = xmin

ai = ai−1 ·
xmax

xmin

1/(M−1)

= xmin ·
xmax

xmin

i/(M−1)

for i=1,2,...,M-1 .

In the logarithmic scale, the bins borders are:

a′0 = log(xmin)

a′i = log(xmin) +
i

M − 1
log

(
xmax

xmin

)
for i=1,2,...,M-1 .

The points of the logarithmic histogram are then (x′i, y
′
i) =

(
a′i, log

(
Si

N ·(bi−ai)

))
.
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Parameter estimation. When the logarithmic histogram seems to reveal a power-

law, the next problem consists of estimating the distribution parameters, x̂min and α̂:

• The value of x̂min is usually obtained from the meaning of the variable which we

are modeling. It is also possible to use the minimum from among all the samples

as a value for x̂min.

• The value of α̂ can be adjusted by least squares, i.e., finding the line y′ = log(C)−
α̂x′ which minimizes the mean squared error of the (x′i, y

′
i) pairs in the logarithmic

histogram. However, it has been observed that this method is prone to error, and

is widely outperformed by the maximum likelihood method [116, 46].

Linear regression. Linear regression adjusts the points to a line y′ = Ax′ + B.

According to our previous observations, we have A = −α̂ y B = log(Ĉ). As the

linear regression is not subject to the constraint Ĉ = (α̂ − 1) · x̂α̂−1
min , the obtained

values for α and C do not necessarily correspond to a probability distribution

function. To overcome this problem, we can just consider the value for the α̂

exponent and then deduce the value for Ĉ using some a priori xmin value. Or either

we can choose the value for x̂min such that the probability distribution function lies

on the regression line.

In the least squares method, we define x′ as the column vector containing the x-

coordinates of the histogram points, and y′ as the column vector containing the

y-coordinates. Then: (
A B

)
= (ZTZ)−1ZT · y′ ,

where Z =
(

x′ 1
)

y 1 is a column vector containing M ones. After some alge-

bra, we get:

A =
M
∑
x′iy
′
i −
∑
x′i
∑
y′i

M
∑
x
′2
i − (

∑
x′i)

2

B =

∑
y′i (
∑
x′i)

2 −
∑
x′i
∑
x′iy
′
i∑

x
′2
i − (

∑
x′i)

2 .

Maximum likelihood. In the maximum likelihood method we compute the

joint probability density function for the random sample (X1, X2, ..., XN), in which

α and xmin are parameters. This function is evaluated in the sampled values,

(x1, x2, ..., xn). The result, which is a function of (α, xmin), will be called likelihood

function, L(αxmin|x1x2...xN):
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fα,xmin
(x1x2...xN) =

N∏
i=1

fα,xmin
(xi)

.
= L(αxmin|x1x2...xN) .

As the samples belong to independent, identically distributed random variables,

with a continuous power-law distribution, the likelihood function becomes:

L(αxmin|x1x2...xN) = (α− 1)Nx
(α−1)N
min

N∏
i=1

x−αi α > 1, xmin ≤ min(x1, x2, ..., xN) .

The estimations of α and xmin are obtained as the maximum of the likelihood

function:

(α̂, x̂min) = arg max
(α,xmin)

L(αxmin|x1x2...xN) .

L(αxmin|x1x2...xN) is strictly increasing for xmin. Thus, the xmin-coordinate for its

maximum is produced at x̂min ≤ min(x1, x2, ..., xN), whereas the α-coordinate is

obtained after a maximization:

α̂ = arg max
α
L(αx̂min|x1x2...xN) .

For convenience, we shall maximize the logarithm of L(αx̂min|x1x2...xN):

lnL(αx̂min|x1x2...xN) = ln

(
(α− 1)N x̂

N(α−1)
min

N∏
i=1

x−αi

)
=

= Nln(α− 1) +N(α− 1)ln(x̂min)− α
N∑
i=1

xi .

The value of α maximizing lnL is

α̂ = 1 +N ·

(
N∑
i=1

ln

(
xi
x̂min

))−1

.
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Example. In order to illustrate these two methods, we generated a million samples

from a continuous power-law with xmin = 1 and α = 3. Figure A.2 shows a logarith-

mic histogram together with the α̂ value estimated by least squares and by maximum

likelihood.
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Figure A.2: Power-laws estimation. Histogram for a million samples of a power-law with
xmin = 1, α = 3. The estimation by least squares (light blue) gives a coefficient α = 3.08.
By max-likelihood, we get α = 3.00.

Estimation of the maximum. When sampling a power-law, it is quite useful

to predict the maximum from among the samples. As Newman observed in [115], the

expected value for the maximum among N samples of a continuous power-law is close

to that value for which the tail distribution equals 1/N :

E[Xmax] = E[max(X1, X2, ...XN)] ≈ N
1

α−1 = N
1
β .

A.3 Scale-free property of power laws

The probability distributions of power-laws present an interesting property known as

scale invariance. The scale invariance implies that a rescaling of the type Z = cX
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conserves the probability distribution function:

fZ(z) = fZ(cx) =
1

c
fX(x) ∝ fX(cx) , z ≥ cxmin .

In fact, the probability distributions of power-laws are the only continuous and derivable

functions with this property, as we show here:

f(x) = g(c)f(cx) x > 0 .

As this behavior must hold for every c > 0, we derivate with respect to c:

0 = g′(c)f(cx) + xg(c)f ′(cx) .

For c = 1:

xf ′(x) = −g
′(1)f(x)

g(1)
.

The solution for this differential equation is:

f(x) = Cx−
g′(1)
g(1) = Cx−α .

Finally, the area-1 constraint in order to be a probability distribution implies α > 1 and

xmin > 0.

What does scale invariance mean? Let us go back to one of our first examples, the

distribution of wealth: if we measure it in dollar units, in yen units or in gold units, we

shall always find a power-law with the same exponent α.

Let us now compare this behavior with the one observed in exponential laws: the

lifetime of an electronic component is usually modeled with an exponential distribution

λe−λx. This distribution will have a certain exponent λ1x when measured in months,

but a different exponent, λ2 = 12λ1, when measured in years. That is, the “shape of

the probability distribution function” is conserved, but its parameters are not. Power-

laws completely conserve the variable distribution after rescaling instead (except for a

constant).
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A.4 Discrete power laws

As pointed at the beginning of this appendix, it is also possible to use discrete power-

laws, which take the form2

p(k) = Ck−α k ≥ k0 > 0, k ∈ N ,

with α > 1. The value for constant C is:

C =
1

ζ(α, k0)
,

where ζ(α, k0) designates the Hurwitz ζ function:

ζ(α, k0) =
∞∑

k=k0

k−α .

Its mean is finite for α > 2 and takes the same value as in the continuous case:

µ =
(α− 1)

(α− 2)
· k0 .

The tail distribution function is:

G(k) =
∞∑
k′=k

Ck′−α =
ζ(α, k)

ζ(α, k0)
, k ≥ k0 .

The mathematical methods for dealing with discrete power-laws are usually more

laborious. The maximum likelihood adjustment arrives at a transcendental equation

involving ζ(α), which must be maximized by numerical methods.

A.4.1 Fitting a continuous power law from discrete empirical

data

It is quite usual to approximate discrete power-laws with continuous ones, in order to

simplify the mathematical calculations. This is the method that we use in this work.

The procedure is the same as for continuous power-laws (see Section A.2). Histograms,

logarithmic binning and linear regression are performed in the same way. The estimation

2This is not the only generalization of the continuous power-law. Some others exist, as the ones
based on the Beta function or the Yule distribution. See references [116, 46].
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of α by max-likelihood in this case prefers the estimator

α̂ = 1 +N ·

(
N∑
i=1

ln

(
xi

x̂min − 1
2

))−1

,

which is slightly different to the expression for continuous power-laws, but is more pre-

cise [46].

A.5 Other heavy-tailed distributions

Power-laws belong to a more general family: the so called heavy-tailed distributions,

whose fall-offs as x→∞ are slower than that of exponential distributions. That is:

lim
x→∞

f(x)

e−x
=∞ .

Some examples of heavy-tailed distributions are: the log-normal distribution, the

Lévy distribution and the Student’s t distribution.
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Table B.1: football network. Upwards left, a histogram of vertex degree distribution.
Down, from left to right: the knn as a function of vertex degree; the average vertex clus-
tering coefficient as a function of vertex degree; and a histogram of the vertex clustering
coefficient.
Data source: [76].
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Table B.2: jazz bands network. Upwards left, a histogram of vertex degree distribution.
Down, from left to right: the knn as a function of vertex degree; the average vertex clus-
tering coefficient as a function of vertex degree; and a histogram of the vertex clustering
coefficient.
Data source: [78].
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Table B.3: stanford.edu web network. Upwards left, a histogram of vertex degree
distribution, adjusted by max-likelihood for k ≥ 10. Down, from left to right: the knn as
a function of vertex degree, adjusted to a power-law by least squares; the average vertex
clustering coefficient as a function of vertex degree, adjusted to a power-law by least
squares; and a histogram of the vertex clustering coefficient. Only the biggest connected
component was considered (90.6% of the vertices).
Data source: Stanford Large Network Dataset Collection http://snap.stanford.edu/

data/web-Stanford.html [103].

http://snap.stanford.edu/data/web-Stanford.html
http://snap.stanford.edu/data/web-Stanford.html


161

AS-CAIDA 2009
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Table B.4: AS-CAIDA 2009 network. Upwards left, a histogram of vertex degree distri-
bution, adjusted by max-likelihood. Down, from left to right: the knn as a function of
vertex degree, adjusted to a power-law by least squares; the average vertex clustering
coefficient as a function of vertex degree, adjusted to a power-law by least squares; and
a histogram of the vertex clustering coefficient.
Data source: The CAIDA UCSD IPv4 Routed /24 Topology Dataset - 2009-07-02, http:
//www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml.

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml


162 APPENDIX B. NETWORK DATASETS

AS-CAIDA 2011
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Table B.5: AS-CAIDA 2011 network. Upwards left, a histogram of vertex degree distri-
bution, adjusted by max-likelihood. Down, from left to right: the knn as a function of
vertex degree, adjusted to a power-law by least squares; the average vertex clustering
coefficient as a function of vertex degree, adjusted to a power-law by least squares; and
a histogram of the vertex clustering coefficient.
Data source: The CAIDA UCSD IPv4 Routed /24 Topology Dataset - 2011-06-30, http:
//www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml.

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
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AS-CAIDA 2013
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Table B.6: AS-CAIDA 2013 network. Upwards left, a histogram of vertex degree distri-
bution, adjusted by max-likelihood. Down, from left to right: the knn as a function of
vertex degree, adjusted to a power-law by least squares; the average vertex clustering
coefficient as a function of vertex degree, adjusted to a power-law by least squares; and
a histogram of the vertex clustering coefficient.
Data source: The CAIDA UCSD IPv4 Routed /24 Topology Dataset - 2013-07-03, http:
//www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml.

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
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AS-DIMES 2011
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Table B.7: AS-DIMES 2011 network. Upwards left, a histogram of vertex degree distri-
bution, adjusted by max-likelihood. Down, from left to right: the knn as a function of
vertex degree, adjusted to a power-law by least squares; the average vertex clustering
coefficient as a function of vertex degree, adjusted to a power-law by least squares; and
a histogram of the vertex clustering coefficient.
Data source: DIMES, Distributed Internet MEasurements and Simulations, http://

www.netdimes.org/.

http://www.netdimes.org/
http://www.netdimes.org/
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LiveJournal
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Table B.8: LiveJournal network. Upwards left, a histogram of vertex degree distribu-
tion, adjusted by max-likelihood for k ≥ 50. Down, from left to right: the knn as a
function of vertex degree; the average vertex clustering coefficient as a function of vertex
degree, adjusted to a power-law by least squares; and a histogram of the vertex clus-
tering coefficient. Only the biggest connected component was considered (99.9% of the
vertices).
Data source: Stanford Large Network Dataset Collection http://snap.stanford.edu/

data/soc-LiveJournal1.html [103].

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
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Table B.9: PGP trust network. Upwards left, a histogram of vertex degree distribution,
adjusted by max-likelihood. Down, from left to right: the knn as a function of vertex
degree, adjusted to a power-law by least squares; the average vertex clustering coefficient
as a function of vertex degree, adjusted to a power-law by least squares; and a histogram
of the vertex clustering coefficient.
Data source: [25].
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E. Coli
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Table B.10: E. Coli metabolic network. Upwards left, a histogram of vertex degree
distribution, adjusted by max-likelihood. Down, from left to right: the knn as a function
of vertex degree, adjusted to a power-law by least squares; the average vertex clustering
coefficient as a function of vertex degree, adjusted by least squares; and a histogram of
the vertex clustering coefficient.
Data source: [144].
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[25] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Arenas. Models of social

networks based on social distance attachment. Physical Review E, 70(5):056122+,

November 2004. 137, 166

[26] B. Bollobás. Graph Theory, An Introductory course. Springer-Verlag, New York,

Heidelberg, Berlin, 1979. 26

[27] B. Bollobás. Random Graphs. Cambridge University Press, 2001. 48

[28] B. Bollobás. Mathematical results on scale-free random graphs. In Handbook of

Graphs and Networks, pages 1–37. Wiley, 2003. 48, 54

[29] B. Bollobás and O. Riordan. The diameter of a scale-free random graph. Combi-

natorica, 24(1):5–34, January 2004. 54

[30] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. The degree sequence of a
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sociales; nuevas estrategias epistemológicas y metodológicas. Nómadas. Revista
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Erdös-Rényi, 49

FKP, 17, 55

forest-fire, 14, 17

LFR, 61, 74

planted l-partition, 61, 74

sandpile, 14, 17

Watts-Strogatz, 12, 17, 59

Waxman’s, 51

modularity, 70

mutual information, 75

normalized, 76

network

CAIDA, 130, 131, 161–163

complex, 18, 22

DIMES, 130, 131, 164

E. Coli metabolic, 137, 167

football, 78, 94, 158

jazz bands, 100, 159

karate (Zachary), 10, 19

LiveJournal, 101, 165

metabolic, 65

PGP trust, 137, 166

protein interaction, 43, 66

trophic, 66

Web (Barabási), 11, 43

Web (Stanford), 100, 108, 160

power-law, 12, 14, 15, 43

preferential attachment, 17, 48, 53

protein folding, 7

scientific reductionism, 6

self-organized criticality (SOC), 14, 17

self-similarity, 14

small-world, 9, 12, 43, 135

system, 7


