
DHT-based Functionalities Using Hypercubes

José I. Alvarez-Hamelin1?, Aline C. Viana2, and Marcelo D. Amorim3

1 Universidad de Buenos Aires – Argentina
2 IRISA/INRIA-Rennes, France

3 LIP6/CNRS – Université Pierre et Marie Curie – Paris VI, France

Abstract. Decoupling the permanent identifier of a node from the
node’s topology-dependent address is a promising approach toward com-
pletely scalable self-organizing networks. Existing solutions use a logical
tree-like structure that, although allowing for simple address assignment
and management, lead to low route selection flexibility. This clearly re-
sults in low routing performance and poor resilience to failures. In this
paper, we propose to increase the number of candidate paths by using
incomplete hypercubes. We will see that this solution can cover a wide
range of applications by adapting to the dynamics of the network.

Key words: Self-organizing networks, indirect routing, DHT, hypercubes.

1 Introduction

A scalable location (lookup) service is one of the main design blocks of a
completely self-organizing architecture for spontaneous networks. In tradi-
tional wired networks, location information can be easily embedded into the
topological-dependent node address, which also uniquely identifies the node in
the network. In self-organizing networks, however, a source only knows the des-
tination’s identifier, and this identifier does not give any clue of the destination’s
address. There is no static relation between the node’s location and the node’s
identifier as a consequence of the spontaneity and adaptability of the network.

In response to these requirements, distributed hash tables (DHT) can be
adopted as a scalable substrate to provide location-independent node identi-
fication [1, 2, 3, 4]. The functionalities of decoupling identification from loca-
tion, and of providing a general mapping between them, have made the DHT
abstraction an interesting principle to be integrated at network layer – this
technique is called indirect routing. The main advantage of such systems is
that they offer powerful and flexible rendezvous-based communication abstrac-
tion [2, 3, 4, 5, 6, 7].

A number of works have already proposed to use DHTs in routing protocols.
These works can be classified in two main groups, which differ in the way

? Contact author: Ignacio.Alvarez-hamelin@th.u-psud.fr. This work was per-
formed while José Ignacio Alvarez-Hamelin was a researcher scientist at
LPT/CNRS, University of Paris XI, France.



2 Alvarez-Hamelin, Viana, and Amorim

the DHT structure is deployed [8]. In the first group, the addressing and the
lookup models are completely independent and routing is performed at the
designed addressing structure. A DHT structure is defined to distribute and
locate information among the nodes in the addressing structure. Examples of
proposals in the literature that implement this approach are: Terminodes [2, 9,
10], Grid [3, 11], and DLM [4]. Most of them assume, however, that nodes know
their geographic coordinates through some positioning system (e.g., GPS). In
the second group classification, the same structure deployed to address nodes
and consequently to perform routing, is also used by the lookup model. This
model describes a coherent sharing of the addressing space among the nodes,
which determines the consistency of the routing protocol. Tribe [7], PeerNet [6,
12], Landmark [13, 14], and L+ [5] are examples of such protocols.

The proposals that fall in the second group proved that it is possible to
build a logical and mathematical structure from mere connectivity between
nodes. Routing using this mathematical space gives the exact behavior of the
routing mechanism in the physical layer. Nevertheless, they lack of robustness
since their space sharing mechanism follows a tree structure. Although simple
to implement, a tree offers low flexibility in route selection. Furthermore, tree
structures are not robust to node mobility, since a node departure causes the
breakage of the tree.

Motivated by these observations, in this paper, we propose to use incomplete
hypercubes instead of trees. Contrary to trees, hypercubes allow the establish-
ment of multiple paths between any two nodes, which increases the robustness of
the topology to mobility. Indeed, according its literal concept, a tree not allows
nodes, in its subtree, to be connected to nodes in others subtrees. Moreover,
a tree is a 2-dimensional structure. Otherwise, in a hypercube nodes can com-
municate in a d-dimensional space, which allows multiple paths among nodes.
We expect then to represent at least a part of the broadcast nature of wireless
scenarios through the multiple dimensions of a hypercube. In wireless environ-
ments, the connectivity is controlled by the density and communication range
of nodes, which can be relatively large.

Our contributions are twofold. First, we propose a proactive routing ap-
proach, where routes are determined a priori. Second, we propose a reactive
protocol that establishes routes on an on demand basis. While the proactive
approach is more adapted to quasi static networks, the reactive protocol is in-
dicated to mobile networks. We show through a number of examples that our
proposals are promising and are more robust to dynamic networks than the
existent related tree-like approaches.

The remainder of the paper is organized as follows. In Section 2, we present
the indirect routing model approach with related work and the proposed ar-
chitecture. We introduce the hypercube used as addressing space in Section 3.
Section 4 presents our approach and discusses routing-specific issues. Some cases
of study are addressed in Section 5 and Section 7 discusses the applicability and
future researches of our proposal.



DHT-based Functionalities Using Hypercubes 3

2 Indirect routing strategy

As well described by works found in the literature [2, 3, 4, 5, 6, 7], the indirect
service model is instantiated as a rendezvous-based communication abstraction.
Nodes called rendezvous nodes are responsible for storing the location informa-
tion of others nodes in the topology. Routing is performed indirectly and the
rendezvous nodes translate a node’s identifier into its location-dependent ad-
dress in the topology. We briefly describe here how indirect routing is performed
by the use of DHT abstraction. More details can be found in the referred works.

Routing is performed through a topology-dependent technique. Every node
is identified by its position in the topology, which is translated into a topology-
dependent address. It is important to underline that the only way of routing
is by using this address. In the general case, every node has three identifiers.
The first one, called universal identifier, U , is supposed to be known by any
other node that are supposed to communicate with the node. This identifier
is independent of any network-level characteristics. It can be a word, a nu-
merical value, or even an IP-like address. The second identifier, the virtual
address V , is a translation of U into the virtual addressing space, V . This
translation is performed through a classical linear congruential hash function
f(U ′) = V = aU ′ + (b mod p). The virtual address V is used to name the
correspondent rendezvous node. The last identifier, the relative address E, is
the current topology-dependent address of the node. Observe that the relative
address changes if the node moves, but both the universal and virtual identifiers
remain unchanged. Fig. 1 illustrates the steps of the routing procedure and the
use of the described identifiers.

When source s wants to communicate with destination d and has no idea of
d’s relative address, it first contacts the node responsible for storing the relative
address of node d (arrow 1). Call this node Td. Thus, the message sent by s
will travel in the network until it is received by Td, the node whose managed
subspace contains the required address. Note that node s does not know Ed, but
it knows Vd (obtained from Ud). Node Td knows the relative address Ed because
node d has previously informed Td about its current address. The rendezvous
node Td plays the role of a “rendezvous” point where the location of node d
is stored. The particularity of this approach is that the rendezvous point is
virtually identified and can be any physical node in the network. Rendezvous
nodes are distributed and depend only on the nodes’ identifiers. When contacted
by s, Td responds with a message containing the relative address of node d, Ed

(arrow 2). Node s can now communicate directly with d (arrow 3).

2.1 Related work

In the traditional Internet model, routing information is embedded into
the topological-dependent node address, i.e. IP addresses have been defined
for both identifying and locating a node in the network. This does not work



4 Alvarez-Hamelin, Viana, and Amorim

d

s

T

1 2
3

Fig. 1. Lookup (arrows 1 and 2) and direct communication (arrow 3) phases in a
DHT-based routing procedure

well in mobile networks (even if they are not self-organized networks), because
permanent node addresses cannot include dynamic location information, which
invalidates topology information. More recently, a number of flooding-based
protocols have been used to address this problem in the specific case of ad
hoc networks. Nevertheless, it has been observed that these architectures do
not scale well beyond a few hundred nodes [15, 16]. For instance, in sensor or
wireless mesh networks, where the potential number of addressable nodes may
be in the order of thousands, current solutions cannot be used.

Most proposed routing algorithms for self-organizing networks distribute the
topology information to all nodes in the network. Thus, following the idea of
indirection routing, the i3 [17] proposes an overlays-based infrastructure that
offers a rendezvous based communication abstraction. i3 decouples the act of
sending from the act of receiving: sources send packets to a logical identifier
and receives express interest in packets sent to this identifier. i3 uses a set of
servers that store identifiers and map packets with these identifiers to i3 nodes
interested in receiving the packets. This approach combines the generality of
IP-layer solutions with the versatility of overlay solutions. Our proposition uses
a similar concept of indirect routing, however, it is not based in an overlay
infrastructure and is independent of IP-layer.

L+ [5] proposes an improved version of Landmark [13, 14] routing, which
is better suited to large ad hoc wireless networks. This protocol describes a
more scalable address lookup service and algorithm improvements that react
better to node mobility. An L+ node updates one location server for each level
in the landmark hierarchy. L+ uses a routing algorithm similar to DSDV [18]
and keeps more than just the shortest route to each destination. Nevertheless,
L+ and Landmark creates a tree-based hierarchical topology where nodes are
placed, offering a low flexibility in route selection.

Tribe [7] is a rendezvous-based routing protocol for self-organizing networks.
By managing regions of a logical addressing space, Tribe nodes route in a hop-
by-hop basis with small amount of information and communication cost. Nodes
that are physically close in the network also manage close regions in the Tribe



DHT-based Functionalities Using Hypercubes 5

addressing space. Thus, the main component of Tribe is its proposed simple
manageable addressing space used to assign addresses to nodes. Nevertheless,
this space is also a tree-like structure, which limits paths by the hierarchical
structure of a tree – there is only one path between any two nodes.

Similarly to Tribe, PeerNet [12] is a peer-to-peer based network layer for
dynamic and large networks. The address reflects the node’s location in the
network and is registered with the respective identifier in the distributed node
lookup service. In PeerNet, the addresses are organized as leaves of a binary
tree – the address tree. PeerNet routing is a recursive procedure descending
through the address tree. Thus, in contrast to Tribe, PeerNet routing dissem-
inates information about the global state of the network, and nodes maintain
a routing table that has l = log N entries, i.e. O(log N) per-node state (N is a
number of nodes in the network). Because of the address tree organization, a
node movement may require the assignment of new addresses to several nodes in
PeerNet structure, which implicitly generates many updates in lookup entries.

2.2 Increasing the number of paths connections

The design of a self-organized network architecture requires an efficient com-
bination of robustness and complexity. The resilience of existent proposals and,
consequently, the performance of the routing protocols are strongly related to
the complexity of the deployed addressing structure. On the one hand, tree-like
structures (e.g., L+ [5], Tribe [7], and PeerNet [6]) lead to simple manageable
spaces. Nevertheless, they have low route selection flexibility, which results in
low routing performance and poor resilience to failures/mobility. Their low com-
plexity is obtained at the cost of some loss of robustness. On the other hand,
more complex structures, like multidimensional Cartesian spaces, improve the
resilience and routing performance due to the flexibility in route selection. The
associated addressing and location models, however, become more complex and
require a tight association between the logical and physical planes. In this paper,
we propose to increase the number of paths connections through hypercubes.

Hypercubes have the inherent property of multiple paths between any cou-
ple of nodes, given a good and interesting logical-topological mapping. This
possibility gives the following improvements. First, traffic can be well balanced,
in contrast to what occurs in a tree, where the root is heavily charged. This
characteristic allows using more efficiently the bandwidth. Another important
improvement is that distances in the DHT hypercube-like structure are closer
to geographic distances in the network than in the DHT tree-like structures
(e.g., L+ [5], Tribe [7], and PeerNet [6]). This makes communications shorter.
Finally, a hypercube allows using different routing methods thanks to its logical-
topological mapping (proactive and reactive routing), i.e. the network could
have a routing schema adapted to the dynamics of the network.

In the following sections, we present our addressing system and explain how
hypercube representation allows the specification of a logical structure where



6 Alvarez-Hamelin, Viana, and Amorim

�������
�������

��������������

������� �������

�������
�������

������� �������

��������������

�������
�������

�������
�������

Fig. 2. Hypercube of dimension d = 4

proactive/reactive routing approaches can be exploited while the lookup service
is performed in a simple way.

3 Address Spaces based on hypercubes

In this section, we describe how to implement a virtual addressing space
based on a hypercube structure.

3.1 A very brief overview of hypercubes

The hypercube is a generalization of a 3-dimensional cube to an arbitrary
number of dimensions d [19]. Each node of the d-hypercube has coordinates 0
or 1 for each dimension, covering all the combinations. This implies that the
total number of nodes is 2d. Each node is linked to all nodes whose coordinates
differ only in one dimension. For example, the cube has a node at coordinates
(0, 0, 0), or simply 000, which is connected with nodes at coordinates 001, 010
and 100, which differ only in one of their dimensions. Thus, the degree, or the
number of edges of each node is equal to the dimension d.

The most important property of the hypercube is the adjacency of nodes
generated by its construction. Fig. 2 shows a hypercube of dimension d = 4. We
can use the coordinates of a node as its network address, then the length of the
address is d. It easy to see that the distance between two nodes is measured by
XORing the two addresses. For example, the distance between nodes 0100 and
0111 is 2 (there are two different bits between these nodes), e.g., a route could
be 0100 -> 0110 -> 0111.

We find interesting examples of hypercube use in: parallel computing [20,
21], peer-to-peer networks [22], genetic codes [23], fault-tolerant and redundant
systems [24], message stability detection in distributed systems [25], parallel
multiprocessor systems [26], data communication [19].



DHT-based Functionalities Using Hypercubes 7

���	����
��
����	���	������������
����	�����������	���

��	����
��

�������������������
	��	���	�����������
�	���	�������������	����������
��

����������������	��
	��������������	��
�	���	�������������	���

��	���
��

��	�

	��	���	�������	�
�	���	����������������

�	��
�� �	���	�����������	�
�	���	�����������	��

�	���
�� 	�	����������	�
����	���	�������	�
�	���	���������������

������
��
	����������������
�	���	��������������	�������
�� �	���	������������	���

Fig. 3. Spontaneous network: physical position of nodes

3.2 The network layer

Using node coordinates in the hypercube as its relative address E, it is
possible to map a physical network into a logical one. For an arbitrary phys-
ical network, the corresponding mapping produces an incomplete hypercube,
because the number of nodes present is less than 2d, and their physical connec-
tion possibilities do not necessarily correspond to all edges of the hypercube.
We show an arbitrary network in Fig. 3 and its representation on the hypercube
in Fig. 2, where physical nodes are represented by black circles. Fig. 3 also has
a possible routing table at the right side of each node.

We have considered that nodes in Fig. 3 have a circular coverage radius.
The hypercube in Fig. 3 does not represent all neighborhood connections. For
example, node 0100 has a physical connection with node 1010, but their ad-
dresses differ in more than one bit and consequently, they are not connected in
the hypercube structure. We say then that the hypercube is incomplete. Never-
theless, even loosing some connections, the network can take advantage of the
hypercube adjacency for routing.

One way to improve this mapping and to make more physical connections
become edges in the hypercube, is by assigning multiple addresses to some
nodes. Since two nodes may not be neighbors in the hypercube although being
physically connected, this allows us better representing physical adjacencies.

The information stored in each node is composed of the main address, the
secondary addresses and its addressing space. The main address corresponds to
a network or relative address E, which is given during the connection process.
When a new node joins the network, the main address is selected by itself from
the addresses proposed by its neighbors (already connected to the network).
After obtaining the main address, the new node can chose one or more secondary
addresses. This is done if it were connected to other physical neighbor nodes
which are not adjacent in the hypercube, i.e. their network addresses Ei are
not adjacent to the new node’s main address. For example the node 0110m3 in



8 Alvarez-Hamelin, Viana, and Amorim

Fig. 3, has it main address and the secondary one: 0111. This secondary address
is used for connecting nodes 0110 and 1111, because 0111 is adjacent to 1111,
i.e. they only differ in one bit.

Each node manages a subspace of the addressing space V . This subspace
is used to: (i) store the database for address resolution queries,2 and (ii) give
addresses to new nodes. The later function implies the delegation of a corre-
sponding portion of addressing space.

The addressing space of a node is determined by its main address and a
mask. This mask is represented by the number of “ones” from the left side,
e.g., m3 is the mask 1110 because the address length is d = 4. The address and
its mask (doing bitwise logic AND) gives the addressing space managed by the
node. This method is very similar to IP subnet masks, because the part with
zeros corresponds to the addressing space managed by the node. For instance,
node 0000m2 in Fig. 3 manages addresses 0000 (its main address), 0010, 0001,
and 0011.

The first parameter to fix is the dimension d of the hypercube, which is
known a priori by all the participants of the network. On the one hand, this
parameter limits the maximum number of nodes, but on the other hand, it gives
more flexibility to connecting nodes due to secondary addresses. The problem
is that each new node should be adjacent to a maximum number of nodes,
ideally to all nodes within its radio coverage, in order to be strongly connected.
Intuitively, the larger the addressing space, the richer the nodes’ choice. We
address this issue in detail in Section 5.1.

3.3 Indirect routing in the hypercube

Recall that using an indirect routing technique means that there are two
phases for forwarding information: (i) the source asks, to the rendezvous node,
the destination’s address using its universal identifier, (ii) the source sends the
messages to the destination. This mechanism presupposes that there exists a
method to find the rendezvous node, because the only available information is
the destination’s rendezvous address V which is managed by a certain node.

As previously seen, the main address and the addressing space are given
by already connected nodes. When a node gives an address, it also delegates a
portion of its used addressing space (generally the upper half of it) to a new
incoming node. For example, in Fig. 3 the node 0000m2 would give the main
address and addressing space 0010m3 to a new node, causing the change in the
0000 mask: from m2 to m3, and it sends all the address resolution information
stored for this addressing space. This means that the main address of a new
node is 0010, and it manage the addresses 0010 and 0011. The utilization of
this method for all the nodes causes a tree distribution of the network addresses,
which we call T in the remainder of this paper. Fig. 3 presents a real topology,

2 The rendezvous node stores the U → E entry.



DHT-based Functionalities Using Hypercubes 9

where cutting the link between nodes 0111 and 1111, we can observe an example
of the T tree.

Therefore, for a given rendezvous address V , we should find all the possible
nodes which can manage it in their addressing space. This task might be very
simple using the T tree. In this case, it is enough to move through the tree
following the match of the rendezvous address V ’s prefix. Again, this search is
trivial for the complete hypercube, but in an incomplete case one needs to find
the T tree. In a normal operation, T always exists. We handle different cases
in Section 5.

4 Design issues: Proactive or reactive?

We present two routing methods in this paper: proactive and reactive. The
first builds and maintains the routing tables all the time, and assures a route
for every node in a network. The second method finds a route on demand, and
maintains the route for a given period of time. Clearly, the proactive approach
is very useful for quite stable networks, (i.e. where node mobility is low and
nodes’ lifetime is long). For highly dynamic networks, where nodes are joining
and leaving all the time, the reactive method is more appropriate.

4.1 Case 1: Proactive routing protocol

In a complete hypercube, there is no problem for routing, because all nodes
and edges exist, then it is possible to use the adjacency properties of the hy-
percube. In a general case, we should propose a routing table composed of a
combination of default entries and some other routing entries. The default en-
tries take advantage of the address assignment method (the T tree). The other
entries consist in a set of routes for other connections which do not belong to T ,
represented by the secondary addresses. In other words, we put one entry in a
routing table for each connection of the node, and also for the shortest advised
routes. Because the address assignment method, each node v has a parent node
and it may also has some children nodes, noted by

– Parent node: Pv is the node that assigns a main address to node v. The parent
node also delegates a portion of its addressing space to node v.

– Child node: Ci
v is the node that has node v as parent node, i.e. PCi

v
= v,

1 ≤ i ≤ k, being k the number of v children nodes.
– Children set: represented by Cv = {C1

v , . . . , Ck
v }, is the set of children nodes.

The address assignment method is formalized as follows. The main address
of node v is p 0 m b, where p is the prefix of the v address, 0 is the zeros which
completes the address length, and b is the number of bits from the left. The



10 Alvarez-Hamelin, Viana, and Amorim

prefix is obtained by doing v AND Mv, where Mv =
∑d−1

j=b 2j . Thus, the node v
assigns an address as following

pv 0 m bv
address assignament
−−−−−−−−−−−−→

{

pv 0 m (bv + 1)
pv 0 + 2d−bv−1 m (bv + 1)

(1)

The parent node Pv has always the main address pv 0 − 2d−βv , where
βv is the first value of bv, i.e. when the main address of v was assigned.
Each child Ci

v in the children set Cv , when they exist, has as main address
pv 0 + 2(d−1)−xi , ∀xi ∈ {βv, βv + 1, · · · , d − 1}. Note that the child index is
defined as i = xi − βv + 1.

Each entry in a routing table is composed of a prefix, a mask, and a next
hop. The masks have the same form as in the IP case, i.e. the number of ones
from the left side.

As mentioned before, there are two types of entries:

– the entries of T tree, e.g., 0 0/0 → pv 0 − 2d−b for the parent node Pv, and
pv 0 + 2d−1−xi / xi → pv 0 + 2d−1−xi for each child node Cxi−βv+1

v ;
– the entries for a neighbor t (i.e. w, u, and z in the example) which does not

belong to the T tree is pt 0/av
t → t, where pt 0 is the prefix obtained applying

the mask defined by av
t , as Mt =

∑d−1
j=av

t

2j .

The entries at v’s routing table are

pw 0 / av
w → w

pv 0 + 2d−1−xn / xn → pv 0 + 2d−1−xn

...
... →

...
pu 0 / av

u → u

pv 0 + 2(d−1)−x1 / x1 → pv 0 + 2(d−1)−x1

pz 0 / av
z → z

0 0 / 0 → pv 0 − 2d−b

where av
w ≥ xn ≥ · · · ≥ av

u ≥ x1 ≥ av
z > 0, and xi is the number of bits from the

left, obtained after the ith = xi−βv+1 child (Ci
v and xi ∈ {βv, βv+1, · · · , d−1}).

The order is very important because the first matching is used for routing.
These entries are determined by Algorithm 0.1 when a local node v is con-

nected to u /∈ Cv . The first step computes the node y which is in the middle of
the path from v to u in the tree T . Then, it computes s, which is the length of
the matching prefix, either of v or of u, because y is ancestor o v or u. Finally, a
message advertising the new route is sent to all neighbors. Then, once receiving
the message each neighbor u executes the Algorithm 0.2 to add and resend the
new received routes when necessary. In this algorithm, dH(·, ·) is the distance
in the hypercube.

We should consider also the case when a node v lost the connection with its
parent node Pv . In this case it sends a message M to its neighbors, in order to
find a connection with the T tree. This message M is resent by each node until



DHT-based Functionalities Using Hypercubes 11

Algorithm 0.1 Routing tables construction at node v

1 Reach a node y, such that d(y, x) ≤ d(v, y) ≤ d(y, x) + 1, where d(·, ·) is the
distance on the default tree T .

2 Set the entry y/s->x in v’s routing table, where s is the number of unchanged bits
between y and, x if it is a y’s descendant in a T , else v is a y’s descendant.

3 Send a message to all neighbors, except x, with y/s->v.

Algorithm 0.2 Forwarding routing tables messages

1 Node u receives {y/s->v} from neighbor v
2 If the d(y, u) ≤ dH(y, v) + 1 then

3 Add the entry y/s->v
4 Send a message to all the neighbors, except v, with {y/s->u}.

one, e.g. w, which is connected to its parent node Pw and the prefix Pv of the
first node v is not contained in Pw. Then, node w resends a message reply to
v which confirms and sets the default route of v: 0/0 → u, such as u is the v’s
neighbor having a path to w. The node w also sends a message, following the
T tree, to reach Pv or its closer ancestor, we call this node Pv . The objective
is to establish a route from Pv to v passing by w, restoring the T tree. In this
way the T tree is reconnected, assuring the default route for nodes v and C i

v .

4.2 Case 2: Reactive routing protocol

In our case, the logical topology is built following adjacent addresses, hence
there is a coherent mapping between the physical positions and the logical
addresses.

There are two complementary methods for routing: the first is for address
resolution messages and the second is for other messages.

Let us begin with the second case. This method considers that the hypercube
is complete, and routes the message by sending it to neighbors whose addresses
are closer to the destination. When a message is blocked, i.e. there is no route,
the message goes backwards and it is sent through a different route, leaving
a mark on the unsuccessful route. Algorithm 0.3 presents the method used to
forward a message at node v, received of node w, when the source is x and the
destination is z. Fig. 4 shows an example where there is no route from v to z.
The number over the arrows corresponds to step number of the algorithm. The
curved arrows are the sent message M and the right arrows is the return of the
message M. The special case of arrows with 6.1 and 6.2 correspond to the first
and second iteration of the loop, respectively.

Remember that dH(·, ·) is the distance in the hypercube, and T is the ini-
tial tree used for distributing the addressing space. This algorithm favors the
exploration of farther regions from the root of T . If it does not find a route



12 Alvarez-Hamelin, Viana, and Amorim

Pv

x3

x2

x1

vw
u

1
2

3

4

11

6.2

6.1

zx

?

Fig. 4. Execution of Algorithm 0.3

Algorithm 0.3 Forwarding in reactive routing at node v

1 v receives a message M(x, z) form neighbor w.
2 v sends the message to a neighbor u 6= {Pv, w}, such that u minimizes dH(u, z)
3 If there is no route from u then mark this route and resend the message to other

neighbor 6= {Pv, w}.
4 If the message is returned again then send the message to its parent Pv in T and

mark all the remaining neighbors as unexplored.
5 If the message returns then do

until all neighbors are explored:
6 send the message to a neighbor marked as unexplored
7 if the message returns then mark this neighbor as blocked, and return to

step 5.
8 If there is no route then

9 If the original sender is the local node v:
10 then no route to host := true.
11 else resend the message M(x, z) to the neighbor sender w.

then it sends the message towards the root, and finally if it still does not find
a route, it performs an exhaustive exploration. A timer is used by resetting the
marks in unsuccessful routes, but they can also reset by an update message.
The value of this timer is long, and is only used to give a robust behavior, i.e.

when an update message is lost.
The update messages are sent when new topological connections are made.

When a node v has been connected with another node w, node v sends update
messages with its address and the new neighbor address w to all its neighbors (w
does not consider this message). Other case is when v receives an update mes-
sage from a neighbor u, then v clears the blocked routes in the u corresponding
interface.

The first routing case, which corresponds to a resolution request, uses a
variation of Algorithm 0.3. This variation consist in, firstly to change of step 2,
and secondly to eliminate the step 3. The elimination of step 3 is motivated to
give more priority, to address resolution messages, to reach their destination.



DHT-based Functionalities Using Hypercubes 13

It is clear that the number of address resolution messages 3 are lower than the
data messages, and then they have less contribution to the congestion of the
T ’s root. The step 2 of Algorithm 0.3 is replaced by

2 v sends the message to a neighbor u 6= w, such that

u minimizes dT (u, pz 0) ∀ s / pz 0 = z AND
P

d−1

i=s
2i.

That is, it finds the neighbor which minimizes the distant to one of the
possible prefixes of the virtual address in the T tree. The reason is that the
virtual address is contained in the managed addressing space of a certain node,
because the T tree distribution method.

5 Practical considerations and case studies

In this section we will consider the application of our architecture in different
scenarios. Then, we present two examples for each routing method.

5.1 Choosing the dimension d

One important issue of hypercubes is the addressing space, because it de-
fines multiple possibilities of connection and routing. We consider two cases:
sparse and dense networks. Given a fixed d, nodes are connected until their ra-
dio neighbors have not any available addresses. In sparse case, nodes are mainly
connected augmenting the diameter of the logical graph. Dense networks, how-
ever, are susceptible to have a lot of connections per node, increasing the number
of secondary addresses, consuming a lot of address per node, and given a small
diameter of the logical graph. Therefore, there is a trade-off between the radio
coverage and the maximum size of the network for choosing the dimension.

More precisely, the extreme case on sparse network is when a node has only
two neighbors, this results in a linear chain with 2d nodes because the address
distribution method follows a T tree. In general, the maximum number of nodes
nmax that can join a sparse network with k neighbors is

nmax =

k
∑

i=1

s(d − i, k) , ∀ 2 < k < d

where d is the dimension of the hypercube, and s(·, ·) is the following recursive
function

s(h, k) =

{
∑k−1

j=1 s(h − j, k) , ∀ h > k

2h , ∀ h ≤ k

3 Discovered addresses are stored in a local cache table and associated to a timeout.
Resolution messages are sent one time for the first communication, and then, when
the timeout of the corresponding cache table’s entry has expired.



14 Alvarez-Hamelin, Viana, and Amorim

For dense networks, the number of addresses in each node depends on the
number of physical neighbors, considering that all nodes could be obtained
from a compatible secondary address with their neighbors. Therefore, a high
percentage of neighbors of a node are connected among them, which means that
the network has a lot of triangles. If the percentage is denoted by c < 1, k is
the number of neighbors, and d is the number of dimensions, then, for each c ·k
nodes there is a clique4. Consequently, if nmax is the number of nodes that can

join a dense network, there are nmax/(c · k) cliques and c·k(c·k−1)
2 number of

connections, i.e. secondary addresses, for each clique. Then,

nmax

c · k
·
c · k(c · k − 1)

2
≤ 2d

nmax(c · k − 1) ≤ 2d+1

nmax ≤
2d+1

c · k − 1
,

where 2d is the total number of nodes in a d-dimensional hypercube.
A useful approximation of maximum path length, for both cases, is the

following. Considering n(`) the number of total neighbors up-to distance ` for
a node in a k regular network (i.e., each node has k neighbors). Then, for ` = 2
we have n(`) = (k − 1)2 + 1, because the neighbors at distance 1 are k, and
each of these neighbors has other k−1 different neighbors. The maximum path
length `max for a network with n nodes is

n = n(`max)

n = (k − 1)`max + 1

logk−1 n ' `max ,

which is valid for k < d/2. The main difference of `max between sparse and
dense networks is the value of k, because dense networks has a higher k than
sparse ones, thus the maximum path distance will be smaller in dense networks.

Therefore, considering the general purpose case, where the addresses are not
too long and where it is also possible to obtain some secondary addresses, an
empirical choice of d could be nmax = 24d/5. That is, we propose to increase the
addressing space by 20% of the address length, allowing up to 2d/5 secondary
addresses per node.

5.2 An example of the proactive protocol

4 In a clique of n nodes each node is connected to all nodes, and the total number of
connections is n(n − 1)/2.



DHT-based Functionalities Using Hypercubes 15

We present here examples of the routing table construction, communication
between two nodes, and address resolution.

For the proactive method, each node has a pre-established table. Consider
Fig. 3 and the routing table of node 1000m3:

destination next hop

1010/3 -> 1010

1100/2 -> 1100

0000/0 -> 0000

The first entry means that all messages addressed to destinations whose most
significant bits are 101 must be sent through node 1010 (one of its children).
The second line is for addresses attained through the child 1100. It is worth
noting here the strict relationship between the addressing space of a child and
the destination entry in the table at the time the child was connected, e.g.,
the entry 1100/2 and its first child 1100m2. Currently, node 1100 has mask m3

because it has already assigned an address to a new node (but its mask was m2
before the arrival of the new node). We call the addressing space of a node at
the time it joins the network the initial addressing space of the node.

Finally, the last line is the default route to its parent node 0000. (Note that
“/0” means the first “0” most significant bits.) The default route is represented
by 0000/0 because it matches all nodes.

It is important to stress that the order of the lines in the routing table is
important. The first line is the most constraining entry, because the 3rd most
significant bits must match (due to “/3”). The last line is the least constraining
entry, hence, the default route entry. The first node in the network does not
have a default route, because it has no parent and it is the parent of all nodes.
However, it has entries for its children, then all the possible addresses in the
hypercube are represented.

There are others types of entries in order to represent a connection that does
not follow the tree structure. This is the goal of our proposal. For example, Fig. 3
displays the connection between nodes 1111 and 0111, and the corresponding
routing tables. In this scenario, node 1111 has the following routing table:

destination next hop

0000/1 -> 0111

0000/0 -> 1110

The default route is through the node’s parent, and the other route means
that all the addresses whose most significant bit is 0 can be reached through
node 0111. This entry, at local node v =1111, can be determined by Algo-
rithm 0.1 after the connection with u =0111.

Now we illustrate a case where a node exchanges data. Consider that node
1110 sends a message to node 0110. The first entry in the routing table of
1110 is 1111/4 ->1111. This means that the comparison is done using the
four most significant bits (because of “/4”) of the destination node 0110. We
observe that the final destination is different to the entry at routing table,



16 Alvarez-Hamelin, Viana, and Amorim

i.e. 01106=1111, and therefore the matching fails. The second line is 0100/2

->1111, the two most significant bits of the destination are 01, and they equal
the two most significant bits of 0100/2. Therefore, this entry matches and the
packet is forwarded to node 1111. The first entry of the routing table of 1111
is 0000/1 ->0111 and the most significant bit of destination is 0 – this entry
matches and the packet is forwarded to 0111. As 0111 is a secondary address,
the packet is now at node 0110, which is the final destination address.

Finally, we present an address resolution request. This kind of message is
routed in the same form as data messages. The only difference is that the
destination, i.e. the rendezvous address, may or may not be the main address
of a node. If it is not the main address, the message will arrive at the node which
manages this address. Therefore, before applying the routing algorithm, each
node must verify if the destination belongs to addresses that it manages. For
example, node 0110 wants to know which is the network address of a particular
identifier U . Then it applies the hash function to know the rendezvous address,
that is hash(U) =1101. Because this address is not managed by the local node
0110m3, it sends the message to 1101. The first entry in 0110’s routing table is
1100/2 ->1111, and it matches because the two most significant bits of 1101

are 11. Then the request message is sent to node 1111. This node does not
manage the address in the request either, so it forwards the message using
its routing table. The first entry is 0000/1 ->0111, which does not match.
The second is 0000/0 ->1110, which matches because it is the default routing
entry, and the message is forwarded to node 1110. Since this node has a m4

mask, it does not manage the address into the request, so it will forward the
message. The first entry in its routing table is 1111/4 ->1111, which does not
match, and the second one is 0100/2 ->1111 which does not match either.
Finally, the last entry matches because it is the default route. The node 1100

receives the request for the server resolution of address 1101, and the addresses
managed by 1100m3 are 1100 and 1101. This node looks up the network address
E corresponding to node U , and sends a reply to the source node 0110 with
the network address E. The source can then directly communicate to the node
whose address is E.

5.3 An example of the reactive protocol

In the reactive case, there are no routing tables, but some information con-
cerning temporary path recently used by each node. This information is cre-
ated in a communication step, storing the unsuccessful paths. In this section
we present two communication cases and an address resolution procedure.

Because this method starts with no a priori knowledge of how complete the
hypercube is, it uses standard routing in hypercubes. This means that routing
is done by changing the different bits one by one, i.e. sending to neighbors
closer to the destination (recall that a node is a neighbor if their addresses
differ on one bit). For example, if node 0100 sends a message to 1111, it does



DHT-based Functionalities Using Hypercubes 17

(0100 XOR 1111)=1011, that is the first, third, and fourth bits change. Then
node 0100 can send the message to one of the following neighbors: 1100, 0110
or 0101, because they differ, from 0100, in only one bit. The only node present
in the network is 0110 (see Fig. 3), therefore the message is forwarded to this
node. At node 0110, XOR is applied again, which results in 1001. The only
existing neighbor is 0111, which corresponds its secondary address. Finally, the
result of XOR is 0001, and the neighbor 1111 is the last step.

We illustrate a more complicated case with the following example. Node
1000 sends a message to node 0110, then (1000 XOR 0110) = 1110, and the
possible forwarders in the network are 1010 and 1100. Node 1000 sends then
the message through 1010. Candidate forwarder neighbors of node 1010 are
1110 and 0010, because (1010 XOR 0110) = 1100. But 0010 does not exist
in the network and 1110 is not connected to it. Node 1010 sends the message
backwards, and node 1000 sets a temporary entry because now it knows that
there exists no path. Of course, this entry should be removed after a timeout, or
if the node becomes connected to other nodes. Finally, the message is forwarded
to node 1100. At this node, the result of (1100 XOR 0110) is 1010, then a
possible forwarder, present in the network, is 1110. This latter receives the
message and computes (1110 XOR 0110) = 1000, but the nodes 1110 and 0110

are not interconnected. In this case, it is better to take a new path in the
opposite way. Then, the message is sent to node 1111. This node computes
(1111 XOR 0110) = 1001, and the possible forwarder is 0111. As 0111 is a
secondary address and its primary address is 0110, the message has arrived to
the final destination.

For the address resolution case, we use the modified Algorithm 0.3. Suppose
that node 1110 wants to send a message to node with universal address U , then
it obtains hash(U) =0101 (the rendezvous address). The node who minimize
dT (1110, 0101) is its parent node Pv = 1100. Since the other nodes are in a
similar situation, the message is forwarded to consecutive parent nodes until it
reaches 0000. Because the first most significant bit is the same as the desired
address 0101, the actual node checks if this address belongs to its managed
space. The result is negative and the message is sent to the neighbor 0100

which is the closest to 0101. This node has in its managed space the addresses
0100 and 0101 (because its mask is m3). Therefore, node 0100 looks up the
virtual address and sends it to 1110 in a response message. The communication
was then done using the T tree. If the T tree is disconnected, the message is
sent backwards until a route is found, as in the data communication case.

6 Discussion

The most effective protocol to self-organization networks is a combination of
a good physical-to-logical mapping with a simple and robust routing protocol,
and small routing tables based principally on the adjacencies. The geographical



18 Alvarez-Hamelin, Viana, and Amorim

routing could be the most promising, but the reception of GPS can not be
enough, e.g., inside of a building. Moreover, the GPS error, which depends also
the reception quality, is too large for some dense networks. Next candidates are
those that use indirect routing and build a logical and mathematical structure
from mere connectivity between nodes. Up to now, this protocols propose a
logical tree for connecting nodes [5, 6, 7, 12, 13, 14].

In the deployment of self-organized systems, flexibility in route selection is
an important issue to be considered, which affects the performance in terms
of path length, traffic concentration, and resilience to failures. In this context,
the organization of the addressing structure has a strong influence. In the tree-
based structures, paths are limited by the hierarchical structure of a tree – there
is only one path between any two nodes. A tree offers low flexibility in route
selection, contrary to the greater flexibility offered by the multi-dimensional
approaches. Our hypercube approach offers multiple links options that get the
path closer to the physical distance.

A spontaneous network could have a well balanced traffic only when the
distance between two nodes is closer to their physical distance. In a case that
the logical structure is a tree, is very difficult to fill this condition, mainly be-
cause the connection order. Even, following the optimal connection order, when
the density of nodes is high, a message sent to a physical neighbor should pass
to other node before to arrive at the destination. Instead, the incomplete hy-
percube is better because it allows multiple links, even for far nodes, giving
more privilege to the neighbors’ connections. This also makes a more coherent
physical-to-logical mapping, given similar physical and logical distances. There-
fore, using the hypercube as underling logical structure, coupled with indirect
routing, we provide redundant connections, a better load distribution. These
characteristics permit to cover a wide range of applications according to their
mobility characteristics.

Although the greater flexibility in route selection offered by the multi-
dimensional approaches, their associated addressing and location models are
more complex, contrarily to simple manageable structures offered by tree-like
structures. The main problem with the incomplete hypercubes could be their
relative complexity, but evidently there exist a trade-off between the simplicity
and the robustness. Our proposal provides the advantages of a good physical-
to-logical mapping and multiples paths which gives a robust behavior.

7 Conclusion

Decoupling the permanent identifier of a node from the node’s topology-
dependent address is a promising approach toward completely scalable self-
organizing networks. A group of proposals that have adopted such an approach
use the same structure to: address nodes, perform routing, and implement lo-
cation service. In this way, the consistency of the routing protocol relies on



DHT-based Functionalities Using Hypercubes 19

the coherent sharing of the addressing space among all nodes in the network.
Such proposals use a logical tree-like structure where routes in this space cor-
respond to routes in the physical level. The advantage of tree-like spaces is
that it allows for simple address assignment and management. Nevertheless, it
has low route selection flexibility, which results in low routing performance and
poor resilience to failures. In this paper, we propose to increase the number
of paths using incomplete hypercubes. The design of more complex structures,
like multi-dimensional Cartesian spaces, improves the resilience and routing
performance due to the flexibility in route selection. We present a framework
for using hypercubes to implement indirect routing. This framework allows to
give a solution adapted to the dynamics of the network, providing a proactive
and reactive routing protocols, our major contributions.

Future research includes a complete evaluation of the proposed protocol
under fixed and mobile environments. Some optimization mechanisms and im-
plementation issues for improving robustness in terms of location information
availability, load balancing, and failures are also interesting to analyze.

References

1. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet
applications,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17–32,
Feb. 2003.

2. L. Blazevic, L. Buttyan, S. G. S. Capkun, J. P. Hubaux, and J. Y. L. Boudec,
“Self-organization in mobile ad-hoc networks: the approach of terminodes,” IEEE
Computer Communications Magazine, June 2001.

3. J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris, “A scalable
location service for geographic ad hoc routing,” in Proceedings of ACM MOBI-
COM’00, Aug. 2000.

4. Y. Xue, B. Li, and K. Nahrstedt, “A scalable location management scheme in
mobile ad-hoc networks,” in Proceedings of IEEE Conference on Local Computer
Networks (LCN), (Tampa, FL, USA), Nov. 2001.

5. B. Chen and R. Morris, “L+: Scalable landmark routing and address lookup for
multi-hop wireless networks,” tech. rep., Massachusetts Institute of Technology,
Cambridge, Massachusetts - MIT LCS Technical Report 837 (MIT-LCS-TR-837),
Mar. 2002.

6. J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Scalable ad hoc routing: The
case for dynamic addressing,” in Proceedings of IEEE INFOCOM’04, (Hong
Kong), Mar. 2004.

7. A. C. Viana, M. D. Amorim, S. Fdida, and J. F. Rezende, “Indirect routing
using distributed location information,” ACM Wireless Networks, vol. 10, no. 6,
pp. 747–758, Dec. 2004.

8. A. C. Viana, M. D. Amorim, S. Fdida, and J. F. Rezende, “Self-organization in
spontaneous networks: the approach of dht-based routing protocols.” to appear
in Ad Hoc Networks Journal, 2005.



20 Alvarez-Hamelin, Viana, and Amorim

9. J. P. Hubaux, T. Gross, J. Y. L. Boudec, and M. Vetterli, “Towards self-organized
mobile ad hoc networks: the terminodes project,” IEEE Communications Maga-
zine, vol. 39, no. 1, pp. 118–124, Jan. 2001.

10. Terminodes Project. http://www.terminodes.com/.
11. Grid Project. http://www.pdos.lcs.mit.edu/grid/.
12. J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Peernet: Pushing peer-to-peer

down the stack,” Proceedings of International Workshop on Peer-To-Peer Systems
(IPTPS’03), Feb. 2003.

13. P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy for routing in very
large networks,” in Proceedings of ACM SIGCOMM’88, Aug. 1988.

14. P. F. Tsuchiya, “Landmark routing: Architecture, algorithms and issues,” tech.
rep., MTR-87W00174, MITRE Corporation, Sept. 1987.

15. J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva, “A performance
comparison of multi-hop wireless ad hoc network routing protocols,” in Proceed-
ings of ACM MOBICOM’98, Oct. 1998.

16. S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in a mobile
ad hoc network,” in Proceedings of ACM MOBICOM’99, pp. 152–162, Aug. 1999.

17. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet indirection
infrastructure,” in Proceedings of ACM SIGCOMM’02, Aug. 2002.

18. C. E. Perkins and P. Bhagwat, “Highly dynamic destination sequenced distance-
vector routing (dsdv) for mobile computers,” in Proceedings of ACM SIG-
COMM’94, Oct. 1994.

19. Y. Saad, “Data communication in hypercubes,” tech. rep., Research Report 428,
Department of Computer Science, Yale University, New Haven, CT, 1985.

20. F. T. Leighton, Introduction to parallel algorithms and architectures: array, trees,
hypercubes. Morgan Kaufmann Publishers Inc. San Francisco, CA, US, 1991.

21. E. Oh and J. Chen, “Parallel routing in hypercube networks with faulty nodes,”
in IEEE International Conference on Parallel and Distributed Systems (ICPADS
’01), pp. 338–345, July 2001.

22. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “Hypercup - hypercubes, ontolo-
gies, and efficient search on peer-to-peer networks,” in Agents and Peer-to-Peer
Computing: A Promising Combination of Paradigms, LNCS 2530, pp. 112–124,
July 2003.

23. M. A. Jimenez-Montano, C. R. de la Mora-Basanez, and T. Poeschel, “On the
hypercube structure of the genetic code,” in Proceedings of Bioinformatics and
Genome Research, pp. 445–459, Oct. 1994.

24. D. Wang, “A low-cost fault-tolerant structure for the hypercube,” Journal of
Supercomputing, vol. 20, no. 3, Nov. 2001.

25. R. Friedman, S. Manor, and K. Guo, “Scalable stability detection using logical
hypercube,” tech. rep., Technion, Department of Computer Science Technical Re-
port 0960, May 1999.

26. J. Slack, “Visualization of embedded binary trees in the hypercube,” tech. rep.,
Final Report of the Project for Information Visualization, Department of Com-
puter Science, University of British Columbia, Apr. 2003.


