

Agenda

- Introduction
- Space Networks
 - Model
- Contact Graph Routing
 - Route Search
 - Route Management
 - Forwarding
- Trends and Outlook

New Space

- Enabling technologies
 - Formation Flying & ISL
 - COTS components
 - SmallSat Paradigm
 - Cheap Launch
- Networked constellations
- Deep-Space exploration

- Small satellites (~500kg)
- Nano satellites (~10kg)

Space Internet

- Space Internet (ground, near-Earth and deep-space)
 - Extended connectivity times
 - Reliability via multiple communication paths
 - In-orbit resource and service sharing
- Fundamental environmental challenges
 - Orbital dynamics
 - Varying and long-range distances
 - Effect of planet rotation
 - On-board power restrictions
 - Propagation delay in deep-space
 - Asymmetric or unidirectional links

Delay and Disruption

Space Internet Protocol Architecture

- Internet protocols (TCP)
 - Largely based on an effectively instantaneous flow of information between sending and receiver nodes.
- Delay Tolerant Networking (DTN)
 - Assumes no instantaneous feedback but potentially lengthy storage of data in intermediate nodes

Telephony model

Epistolary model

DTN

Routing in Internet vs DTN

- Internet routing schemes are based on stable connections
 - Disruptions are considered an error
- DTN routing schemes are based on unstable connections
 - Disruptions are a natural part
 - Get *next hop* and *when* to send depending on *when* it is expected to arrive:
 - Space Networks: possible to know the future connectivity (contact plan)
 - Contact Graph Routing (CGR)

DTN Origins

- DTN originated from the Interplanetary Internet project
 - Introduced by a team led by Vint Cerf in 2003
 - Motivated other applications (vehicular, social, underwater, IoT)

3 min

Venus

6 min

Mars

12 min

Jupiter

43 min

DTN Taxonomy

- Opportunistic
 - No assumptions can be made on future contacts
- Probabilistic
 - Contact patterns can be inferred from history
- Scheduled
 - Contacts can be accurately predicted
 - Deep-Space: Links disrupted and delayed
 - Near-Earth (LEO, MEO, GEO): Links disrupted

DTN Protocols and Procedures

- Principles
 - Store-carry-and-forward
 - Minimal end-to-end messaging exchange (feedback)
- Architecture → Bundle layer (overlay)
 - Bundle protocol
 - Persistent storage resources (in contrast to Internet buffering)
 - Encoding and block format of bundles (BP data units)

- RFC 4838
- RFC 5050
- CCSDS BP
- CCSDS SABR

DTN Protocols and Procedures

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Avg. Distance to Sun (UA)	0,38	0.72	1.00	1.52	5.21	9.54	19.18	30.11
Latency	3 min	6 min	8 min	12 min	43 min	1h20	2h40	4h10

Bundle Protocol Features

- Convergence Layer Adapters
 - Adapt session, encoding, MTU to underlaying TCP, UDP, Bluetooth, Ethernet...
- Custody Transfers
 - Nodes can take custody to enhance reliability and reduce congestion (storage)
- Fragmentation
 - Bundles have no size limit, fragmentation to multiplex and fit contacts
- Priorities
 - Traffic priority (unicast) and critical flag (forward copies to all neighbors)
- Deadlines
 - Real Time to Live (TTL), to avoid congestion

Bundle Protocol Data Unit Parameters

Bundle parameters (relevant to routing)

	Bundle primary block parameters		
	B.src & B.dst	Source and destination nodes for the bundle	
	B.size	Bundle size, including both header and payload sizes	
	B.p or priority	Priority class of the bundle $(1 p)$	
	B.critical	Bundle critical flag	
	B.custody	Custody transfer requested flag	
	B.fragment	Fragmentation authorized flag	
	B.deadline	Expiration time of the bundle	
	Computed parameters		
	B.EVC	Estimated volume consumption ($size * 1.03$) [17]	
	B.sender	Previous sender of the bundle, informed by CLA	

Bundle Protocol Implementations

- Interplanetary Overlay Network (ION)
 - Developed by JPL, NASA Full-featured solution (microprocessors)
- Micro-Planetary Communication Network (µPCN)
 - Developed by TUD Lightweight POSIX (microcontrollers)
- 2008: UK-DMC (ION)
- 2008: DINET (ION)
- 2012: JAXA GEO
- 2013: LADEE
- 2018: ISS (ION) until today
- 2019: OPS-SAT (μPCN)
- 2021: Lunar IceCube (ION)

- Emulations
 (ION and μPCN virtualizations)
- Simulations (DtnSim)

Routing Framework

- Planning: pre- and post-processing of the contact plan
- Routing: path computation from contact plan –
- Forwarding: path selection and queuing on outgoing interface

9

Contact Graph Routing

- Determinate when and to which neighbor a bundle should be forwarded
- Opportunistic/probabilistic DTNs: flooding, probability inference
- Scheduled DTNs: the contact plan must be efficiently processed
 - Theoretical models: (e.g., MILP) optimal (global) results at the expense of processing
 - Algorithmics: CGR has demonstrated sufficient accuracy and efficiency to become the de facto (local) routing framework for space DTNs

Contact Graph Routing History

- 2008: first paper on CGR (S. Burleigh, JPL)
- 2009: draft presented at IETF, early CGR versions released in ION
- 2011: source routing extension (Ed Birrane, APL), Dijkstra (J. Segui, JPL)
- 2012: consideration for LEO satellites, Ring Road networks
- 2014: arrival time estimation improvement and overbooking management
- 2015: survey in IEEE Coms Mag
- 2016: opportunistic contact extension
- 2017: forwarding improvements and regionalized scalability
- 2018: route table management, Yens' algorithm
- 2019: uncertain contact planning extensions, SABR in CCSDS

Contact

• A contact $C_{A,B}^{t1,t2}$ is defined as a time interval (t1; t2) during which it is expected that data will be transmitted by node A at a rate R such that data will be received by node B.

Contact Directionality

- Contacts are unidirectional
 - # forward and return data rates
- Bidirectional = pair of contacts
 - Due to owlt, the start time of a contact in one direction is typically not the same in the reverse channel

Contact Volume

- Contact volume: (C.end C.start) * C.rate
 - Variable bit rates can otherwise be approximated via averaging
 - Adaptive modulation and coding can be modeled via consecutive contacts

Contact Variables

Contact parameters

Contact Plan

Contact plans capture the time evolving nature of the network

Contact Graph

- Contact graph
 - Destination node D
 - Source node S
 - Directed acyclic graph $CG_{DS} = (V; E)$
 - Edges *E* are episodes of data retention
 - Vertices V are episodes of contact

Contact Graph Construction

- Vertices: contact \rightarrow transmission (directly or not) from A to E
 - Vertices model propagation delay or owlt
- Edges between contacts | destination = source
 - Edges represents a temporal storage in the connecting node
- Notional contacts from node A to itself and from node E to itself
 - Root and terminal contacts
- Different contact-graph is used for each source-destination pair

Routes

- A route R_A^E from A to E is a sequence $hops[\]$ (contacts) such that
 - 1. the sending node for the first contact is A,
 - 2. the receiving node for the last contact is E,
 - 3. the receiving node for contact i is the sending node for contact i + 1,
 - 4. the time at which contact i + 1 ends is no earlier than the time at which contact i begins

Route Examples

- Route (1):
 - $R_A^E = \{C_{A,C}^{0,60}, C_{C,D}^{0,30}, C_{D,E}^{0,10}\}$
 - Best delivery time BDT = 3
- Route (3):
 - $R_A^E = \{C_{A,C}^{0,60}, C_{C,D}^{0,30}, C_{D,E}^{30,40}\}$
 - Storage at node D until t = 30
 - Best delivery time BDT = 31

Route Parameters

Route parameters

	Fixed parameters	S	
	R.hops[]	List of contacts in the route	
	$R.to_node$	Final node in the path $(hops[-1].dst)$	
	$R.next_node$	First neighbour in the path $(hops[1].dst)$	
	$R.tx_win(s,e)$	Interval of time (s, e) where the route is valid	
	R.BDT	Best time at which data can arrive to dst	
	R.volume	Maximum data the route can carry	
	Variable parameters		

Computed in forwarding based on a specific bundle

Forwarding working area:			
R.ETO	Earliest Transmission Opportunity		
R.PAT	Projected arrival time		
R.EVL	Route's effective volume limit		

Volume

- Volume modelling enables congestion control
- Consider route (1) $R_A^E = \{C_{A,C}^{0,60}, C_{C,D}^{0,30}, C_{D,E}^{0,10}\} \rightarrow R. \ volume = 8$

Route Search

Contact Graph Dijkstra Search

- Dijkstra's shortest path algorithm can be adapted for contact graphs
 - Result: a single route R_S^D from source S to destination D in contact plan CP

Route Search

Contact Graph Dijkstra Search

```
Algorithm 1: Contact Graph Dijkstra Search
   Data: root contact C_{root}, destination D, contact plan
         CP (with cleared working area)
   Result: Route R_S^D from source S to destination D
1 R_S^D \leftarrow \{\}
C_{fin} \leftarrow \{\}
                                            // final contact
BDT = \infty
                                     // final arrival time
4 C_{curr} = C_{root}
                               // current contact is root
   /* contact plan exploration loop */
5 while True do
       /* contact review procedure */
       C_{fin}, BDT \leftarrow CRP (CP, C_{curr}, C_{fin}, BDT)
       /* contact selection procedure */
       C_{next} \leftarrow CSP (CP, C_{curr}, BDT)
      if C_{next} \neq \{\} then
          C_{curr} \leftarrow C_{next}
      else
10
           break
                       // review and selection completed
   /* route reconstruction loop */
12 if C_{fin} \neq \{\} then
      C = C_{fin}
       while C \neq C_{SS}^{0,\infty} do
          R_S^D.hops \leftarrow \{C\}
                           // previous contact in path
       Compute (R_S^D.tx\_win, R_S^D.volume)
```

- CG is constructed on the fly
- ► Contact Review Procedure (CRP) → Alg. 2
 - Update $C.arr_time \ \forall \ successors \ contacts$ of C_{curr}
- - Selects best arr_time metric
 - $C_{curr} \leftarrow C_{next}$, ends when no is C_{next} found
- Route is reconstructed, if any
 - lacksquare Based on C_{fin} and BDT

Route Search

Contact Graph Dijkstra Search

Multiple Routes

- A list of routes is needed for each destination
 - Route expires after $tx_win.end$ → others will be needed afterwards
 - Limited volume → others might provide the extra capacity
 - Priority class volume → others might provide a means to reduce congestion
 - Uncertainties or failures → others might provide necessary redundancy

Multiple Routes: Trivial Solution

- 1. $R_1 \leftarrow dijkstra_search(CP)$
- 2. $CP.remove_contact(R_1.hops[0])$
- 3. $R_2 \leftarrow dijkstra_search(CP)$
- 4. $CP.remove_contact(R_2.hops[0])$
- *5.* ...

Multiple Routes: Trivial Solution Issues

Multiple Routes: Yens' Algorithm

- Yen's algorithm
 - Dijkstra search in a nested loop
 - Delivers a set of the K best routes in $[R_S^D]$.
 - $[R_S^D]$ is a subset of a potential routes $[P_S^D]$
 - $[P_S^D]$ is populated with up to K routes on each iteration *originating* from the last best route found $[R_S^D][-1]$.

```
Algorithm 4: Contact Graph Yens' algorithm
   Data: source-dest. S-D, contact plan CP, K routes
   Result: Route list [R_S^D] with K routes
 1 Clear (CP)
 \mathbf{Z}[R_S^D] \leftarrow C_{S,S}^{0,\infty} + \text{Dijkstra}(C_{S,S}^{t,\infty}, D, CP)
3 [P_c^D] \leftarrow \{\}
                                           // potential routes
4 for k from 1 to K-1 do
       for C_{spur} \in [R_S^D].[-1] do
           /* root path from C_{SS}^{0,\infty} to spur contact */
           P_{root} = [R_S^D].[-1].hops[0, C_{spur} - 1]
           Clear(CP)
           /* suppress all contacts in root path */
           for C \in P_{root} do
               C.suppr = True
           /\star suppress C_{spur} edges in any R in R_S^D \star/
           for R \in [R_S^D] do
               if P_{root} = R.hops then
11
                   C_{spur}.suppr\_nh \leftarrow R.hops[len(P_{root})]
12
           /* compute spur path from C_{spur} to D */
           C_{spur}.arr\_time = P_{root}.arr\_time
13
           C_{spur}.visited\_n \leftarrow \forall P_{root}.hops.to
           P_{spur} = \text{Dijkstra}(C_{spur}, D, CP)
15
           /* if any, insert new potential route */
           if P_{spur} \neq \{\} then
16
                [P_S^D] \leftarrow \{P_{root} + P_{spur}\}
               Sort [P_S^D] by arrival time
           /\star move best potential route to [R_S^D] \star/
           if [P_S^D] is not empty then
19
               [R_S^D] \leftarrow P_S^D[0]
20
           else
21
               finish
                                // no more potential routes
```

Multiple Routes: Yens' Algorithm

Candidate Routes

- Candidate route: subset of $[R_S^D]$ computed at forwarding time
 - Based on queue status at current time and the parameters of the bundle

Candidate Routes Computation

- Deadline checks
 - \blacksquare R.BDT > B.deadline
- Earliest tx opportunity (ETO)
 - Queue backlog (B.EVC) for B. p
- Projected arrival time (PAT)
 - B transmission time $\forall R.hops$
- Effective volume limit (EVL)
 - Lowest value $\forall C.EVL \in R.hops$

Candidate Route Selection

- Best candidate route criteria
 - 1. Smallest value of projected arrival time (PAT)
 - 2. Fewest contacts (hops)
 - 3. Latest termination time (end of tx_win)
 - 4. Smallest first hop node ID number
- Critical bundles (B. critical),
 - A copy sent to every neighbor $(R.to_node)$ in the candidate route list

Post-Forwarding Actions

- After forwarding
 - Update $C.MAV(p) \ \forall \ C \in R.hops[] \ \forall \ p < B.p$
 - If $R.RVL(p) = R.volume \mid p < B.p$ (subscribed) \rightarrow overbooking management
 - If the first contact did not occur as expected, B shall be re-forwarded

Trends Outlook

Scalability and Uncertainty

Scalability (Hierarchical inter-regional routing)

Uncertainty (Uncertain and Opportunistic routing)

References

Materials and Further Reading

Software

- PyCGR library: https://bitbucket.org/juanfraire/pycgr.git
- DtnSim: https://bitbucket.org/lcd-unc-ar/dtnsim/src

Outreach

- https://elgatoylacaja.com/dame-una-senal/
- https://elgatoylacaja.com/rastis-satelitales/

Papers

- https://scnl.diten.unige.it/publications/CommMag-2015-CG.pdf
- https://www.hindawi.com/journals/jcnc/2017/2830542/abs/

Algorithms 2, 3 & 5

https://drive.google.com/file/d/12zpEwKnipiq_qqlh0kwchBbih88l8dpV/view?usp=sharing

https://www.amazon.com/-/es/Juan-Fraire-ebook/dp/B079C3W62L

