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Abstract This paper presents a new model for the Internet graph (AS graph) based on the concept of
heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in [5] to grow a
random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to
generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations
and an analysis of the standard parameters measured in our model, compared with measurements from
the physical Internet graph.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees – 89.75.Da Systems obeying
scaling laws – 89.75.Fb Structures and organization in complex systems – 89.65.Gh Social and economic
systems - Economics; econophysics, financial markets, business and management

1 Introduction

1.1 Motivations

The observations made by the three Faloutsos brothers [6]
in 1999 were a striking revelation for the computer science
community: Internet topology is not what was expected
but follows “scale-free” properties, such as power-laws on
the degree distribution and other parameters. These prop-
erties do not match the standard laws of the classic Erdös-
Rényi random graph model. The models used to date for
simulations, prediction and mathematical proofs do not
match the “real networks”. “Scale-free” properties mean
that the parameters of the system do not have typical val-
ues, in particular, very high values are reasonably probable
(as opposed to Gaussian distributions). The distribution
of the degrees (numbers of distinct connections) measured
on the Internet autonomous systems (ASs)1 graph follows
a power law: the number of ASs connected to d other ASs
is proportional to d−β with β ≈ 2.1. Interestingly enough,
the value of β is stable over several years.

Ever since, much research has been conducted in order
to try to explain these facts, by proposing various random
graph models. These models are important to obtain bet-
ter predictions or simulations of network behavior (such
as virus spreading [11]), but also, hopefully, to build a new
theoretical framework for more formal results.

1 There are essentially two levels for studying the physical
graph of the Internet: the router level (230.000 to 650.000
nodes, depending on the exploration) and the AS level (about
12 000 nodes). An autonomous system (AS) is an independent
entity, such as a university, a local network... The AS graph is
basically the hierarchical level along which packets are routed.

1.2 Previous Results

Different models aim to reproduce as closely as possible
the power laws measured regularly on the Internet: exam-
ples are BRITE [10], INET [7],... These models are very
sophisticated and follow reasonably the distributions ob-
served (as long as one manages to compile their genera-
tors). However, these models do not offer satisfying expla-
nations of the dynamics going on, and certainly do not
allow the construction of a simple theoretical framework.

The first model leading to power law on degrees, known
as linear preferential attachment, is due to Albert and
Barabàsi [1]. In this model, nodes are inserted one after
the other and every new node is connected to a fixed (or
random) number of existing nodes, chosen with a proba-
bility proportional to their current degree. [1] shows that
the distribution of the degrees d is a d−3 law. Another in-
teresting possible explanation for the observed power laws
was proposed by Kumar et al [9] for the Web graph (the
directed graph of the HTML pages connected by hyper-
links). In their model, nodes are again inserted one after
the other; each new node 1) is connected to a fixed (or ran-
dom) number of existing nodes, chosen uniformly, and 2)
copies some of the links of a fixed (or random) number of
existing nodes, chosen again uniformly. This model yields
also a power law on the degree distribution. More recently,
inspired by the work of [3], Fabrikant, Koutsoupias and
Papadimitriou in [5] propose a new model, which grows a
random tree incrementally: every new node is connected
to a pre-existing node that minimizes a trade-off between
cost and efficiency. They show that the degree distribution
of the nodes is heavy tailed, and raise the conjecture that
power laws, often qualified “signature of human behavior”,
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may be the product of greedy multi-criteria optimization.
This question deserves to be studied in detail. The FKP
tree model was further studied theoretically in [2] and [8].

1.3 Our Contribution

This article aims to evaluate how the optimization-based
scheme suggested in [5] may effectively apply to the In-
ternet. The first challenge is to obtain a model which gets
closer to the dynamic observed for the Internet (see [4])
yet still remains simple. The second is to obtain a time-
efficient generation. Our new model generalizes the model
of [5] by growing a graph with a dynamic similar to the
one observed by [4] for the Internet. We compare the re-
sult of an important simulation study using our model to
the classical measures of Internet topology, and we pro-
pose an analysis of the parameters of our model to get as
close as possible to these target values. We observe that
parameters values in our model are close enough to those
observed on the Internet, to validate the concept intro-
duced in [5]. This gives a new plausible explanation for
the power laws observed in the Internet structure. Our
study ends with suggestions for improving our model, in
particular by adding capacities to the links, which cor-
responds to a real request of the network community in
order to conduct reliable simulations.

2 The Model

Our model is a generalization of the FKP random growing
tree introduced by Fabrikant, Koutsoupias and Papadim-
itriou [5], that we will describe first.

2.1 The original FKP model

Inspired by the work of Carlson and Doyle on power laws
and fault tolerance maximization (see [3]), the authors of
[5] propose to build a random tree as follows. The sequence
of nodes is a sequence of random points (xi) chosen uni-
formly in the unit square [0, 1]2. The first point x0 is the
root of the tree, and every new point xi gets connected to
the pre-existing node xj , j < i, in the tree that minimizes:

d(xi, xj) + θ · h(xj , x0) (1)

where θ is the parameter of the model2, and where d(xi, xj)
and h(xj , x0) are, respectively, the Euclidean distance be-
tween xi and xj in [0, 1]2, i.e. the length of the link from xi

to xj (the cost for drawing the link), and the hop distance
from xj to the root x0 in the tree, i.e. the “operating cost”.
The tree grows by greedily optimizing a trade-off between
two opposite costs: the cost for building the edge, and the
operating cost of the resulting network (assuming that

2 The original parameter in [5] is α = 1/θ. Adopting θ im-
proves readability, by first avoiding a lot of 1/α and, second,
because θ is the length parameter of the model.

nodes only communicate with or through the root). The
model exhibits an interesting phase transition-like behav-
ior for the degree distribution of the n first nodes of the
tree: for θ > 1/

√
2, one always get a star; for θ < 1/4, as

long as n � 1/θ2, the degree distribution is exponential;
but as soon as n � 1/θ2, the degree distribution becomes
heavy tailed. The authors raise the conjecture that “power
law-like” distributions observed in human activities, may
be the product of “balanced” trade-off optimization (refer-
ring to the fact that heavy tailed distribution appears for
relatively “balanced” values of θ relatively to n). Kenyon
and Schabanel [8] have shown the same kind of transition
if one draws from every new node, two links, instead of
one, to the two nodes xj and xj′ that minimizes (1); let
us denote this model FKP2. The FKP tree was studied
further by Berger et al [2]. They show that its degree dis-
tribution did not follow a “standard power law” in the
sense that it has way too many leaves (n−o(n)). Further-
more, Kenyon and Schabanel [8] demonstrate that when
θ is constant, only a small number of nodes are grand-
fathers. The FKP model is thus, as is, a poor model for
the Internet, but opens interesting questions: may trade-
off optimization yield new and easy models for growing
networks?

2.2 Our model

As seen above, the models FKP, which builds a tree, or
FKP2, which has no degree 1 node, are not satisfying can-
didates to model the Internet. We extend the FKP ap-
proach to propose a new, more realistic model, following
more closely the observed Internet dynamic. According to
[4], AS graph dynamic from 1998 to 2000 had the following
characteristics:

Fact 1: Most new nodes have degree 1 (87%) or 2 (12%)
when created.

Fact 2: About 50% of the links appear independently from
node creations.

Fact 3: One node (resp. a link) is deleted every third node
creation (resp. second link creations) – which induces
an exponential growth. Furthermore, AS (resp. link)
deletions are strongly correlated with AS (resp. link)
creations.

The correlation in Fact 3 suggests that most link or AS
deletions are indeed network upgrades. We thus propose
to neglect AS and link deletions in our model. As far as
we know, none of the proposed models incorporates node
or link deletions presently.

Our model. Our model constructs a graph accordingly
to Facts 1 and 2. In all its generality, our model has five
parameters (θ, γ, k, q, τ) that will be discussed below. The
nodes are a sequence of n points (x0, . . . , xn−1) randomly
chosen in R

2 according to some probability distribution.
We study in this article two distributions: the uniform
distribution over [0, 1]2, and the distribution of the US
population given by the 1990 census. The construction
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starts with the point x0. x0 is the first origin of the graph.
This origin, denoted ω, changes from one node to another
regularly over time in our model, in order to break the
model centrality. The insertion of node xi, i ≥ 1, takes
three steps :

1. New node xi is linked to the k distinct nodes xj1 , ..., xjk

that minimize at the time of the insertion:

d(xi, xj) + θ · h(xj , ω) (2)

2. Then, q new edges e1, ..., eq are added one after the
other. If G denotes the graph just after the insertion
of edge ej−1, ej is the edge that minimizes the following
quantity:

`(ej) +
γ

i

i
∑

a=0

(

hG∪ej
(xa, ω) − hG(xa, ω)

)

(3)

where `(ej) denotes the Euclidean length of ej in the
plane, and where hG(xa, ω) and hG∪ej

(xa, ω) are the
hop distances of node xa to the origin ω in graphs G
and G ∪ ej respectively. The γ-weighted term in (3) is
thus the expected decrease of the hop distance from
the current nodes to the origin ω.

3. Every τ node insertions, change the origin to a random
node xa, chosen with a probability proportional to its
degree: ω := xa.

Note that when k = 1 (resp. k = 2), q = 0 and τ = ∞,
it is the FKP model (resp. FKP2 model). While Step 1
determines how the new node joins the network, the origin
improves at Step 2 its global connectivity to all the other
nodes by adding a new edge in the network. Step 3, moves
the origin randomly, which allows us to get an isotropic
network for a very small amount of computation time –
this basically approximates to a global optimization.

Choosing k, q, τ to model AS graph. Fact 1 suggests
that most of the newly created nodes have degree 1. We
have thus chosen k = 1 in our simulation (we could also
have considered k as a random variable). Fact 2 suggests
that half of the edges are created independently from node
creation. These insertions take place in step 2 in our model.
We have then chosen q = 1. Finally, in order to maximize
our model isotropy, we chose τ = 1: the origin changes
after each iteration.

Our model is left now with only two parameters θ and γ.

Implementation. Computational efficiency of our model
is a central concern. Randomly changing the origin allows
us to save a factor of n in the computation time: it allows
us to obtain isotropy without having to minimize the hop-
distance to all the other nodes in the trade-offs in steps 1
and 2. Step 2 is the most time consuming; our implemen-
tation takes presently O(n4) time; this is a serious obstacle
to generate relatively big graphs (> 2000 nodes): gener-
ating a 1000 node graph takes about 15 min on a 1GHz

Powerbook G4 (1 hour for 1500 nodes). Considerable im-
provements in time performance can be achieved using
hash tables by hop-distances to the origin, and Voronöı di-
agrams. The main goal of this paper is however to study
the pertinence of this approach for Internet modeling, not
yet its optimization. We are currently working on includ-
ing these improvements to obtain O(n2+ε) time generation
of n node graphs. Figure 10 gives two examples of graphs
generated by our model.

The thermodynamic limit. As noted in [5,2] on the FKP
model, unless θ or γ depend on n, the network converges to
a constant diameter graph with a highly connected “ker-
nel” and a large majority of leaves. This article does not
consider θ and γ as functions of n; the main reason is
that our current implementation only allows us to reach
relatively small values of n (n . 1500) and thus adding
a dependence on n would not make sense at this point.
Again, this paper is an exploratory study of the validity
of the trade-off optimization principle to model Internet
growth, further improvements should be considered in the
future.

3 Model validation

In order to validate our model we compare it with some
widely used parameters. The reason we use these param-
eters is very empiric: most of the publications refer to
them. We believe that pertinent parameters may differ
from one application to another. It may even be the case
that the best graph model (in the sense: the observed phe-
nomenon behave the same as in reality, and is tractable
on the model) for a given routing problem over the Inter-
net may differ significantly from the actual Internet graph.
Finding which parameters one should observe to compare
two models given a particular application is presently an
important open issue.

The parameters that we measured are:

– the average degree, deg (4− ε trivially for our model).
– the clustering coefficient, Clust: the average probabil-

ity that two neighbors of a given node are directly con-
nected to each other. (Note that this basically counts
the number of triangles.)

– the minimum and average eccentricity, exm and ex re-
spectively: exm = mini maxj h(xi, xj) and

ex = maxj h(·, xj).
– the graph diameter, D.
– the average hop distance, h(·, ·).
– the exponent β of the closest power law to the degree

distribution: Pr{a node has degree d} ∼ d−β .
– the absolute correlation coefficient ACC of the power

law on degrees. (|ACC| ∈ [0, 1]; the correlation is per-
fect if |ACC| = 1, and inexistent if |ACC| = 0.)
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3.1 Statistical properties of random graphs generated
by our model

We first explore the possible values of the parameters θ
and γ, and then study the evolution of the measured pa-
rameters with the size of the graph. We observe that θ
and γ modify essentially the exponent β of the computed
power law observed on the degree distribution:

Pr{a node has degree d} ∼ d−β (4)

Influence of γ. Our empirical measurements show that
only max(γ, θ) seems to influence β: for instance, when
γ < θ, the graphs obtained are independent of γ. There-
fore, we adopt θ = γ. We are now left with one single
parameter, θ, in our model.

Influence of θ on the degree power law. θ is the length
parameter of the model: it is basically the maximum length
of a link one can draw. Naturally, the diameter and ec-
centricity decrease when θ increases. The exponent β is
also a decreasing function of θ: as θ increases, there are
more and more high degree nodes. Surprisingly enough,
the clustering coefficient also decreases when θ increases:
it is more profitable to connect closer to the current origin,
than drawing shorter links towards its neighbors. As the
graph gets a “smaller world” (smaller diameter), its clus-
tering coefficient gets smaller too! This is an interesting
peculiarity of these trade-off optimization based models.
Figures 1–7 sum up these observations that will be dis-
cussed below.

Influence of the size of the graph. Table 1 shows the
influence of the size n of the graph on the measured pa-
rameters, and compares them to the measured AS and
IR graphs. We have generated graphs for two values of θ:
θ = 0.03 and θ = 0.001. Both values yield a satisfying ex-
ponent β close to that the Internet (roughly β ' 2.1 [12]).

We verified that as n increases, the exponent β, the
clustering coefficient and the diameter get closer to AS
graphs values. This may be due to the fact that the highest
graph size we can reach is closer to the AS graph size than
to the IR graph size. Hence, comparison with the IR may
not be relevant.

Table 2 compares the parameters measured on FKP
and FKP2 models (q = 0, τ = ∞, and k = 1 or 2 in our
model) for the same value of θ. We observe that the ex-
ponent β in the FKP model is closer to Internet’s β, but
its clustering coefficient is null and the diameter is much
larger, mainly because the graph is a tree. Concerning the
FKP2 model, we observe that there is no degree 1 node
and that the clustering coefficient is too high compared
to the AS graph. We conclude that our model fits bet-
ter the real values observed on the Internet and improves
considerably the previous approaches based on trade-off
optimization.

Statistical analysis. In order to obtain a precise evolution
of the parameters, we have undertaken a large simulation
study. For every value of θ = γ from 0.001 to 0.1 in steps
of 0.001, we have generated 100 graphs of n = 1000 nodes.
For each value of θ, we computed the average values and
standard deviation of the different parameters. The results
are shown in Figures 1–7. We observe that our model is
stable and coherent, i.e., one can obtain any desired β
value with an error of ±5% approximately.

The length parameter θ in the optimization process
controls where a new node or a new link is connected to.
When θ (and γ) is low, any new node connects to a node
near by without paying too much attention to the distance
to the current network origin. The distance to the network
origin increases as the graph grows, and the diameter is
larger. One observes that the diameter/eccentricity ratio
remains almost constant. The node degree is rather low,
because it depends only on the probability of having nodes
near by.

When θ (and γ) is low, the situation for the new links
is similar. They tend to connect nodes near to each other.
Hence, the diameter does not significantly decreases. How-
ever, the clustering coefficient is high because the new
links are created in the local environment, and the prob-
ability of building triangles is high.

On the other hand, when θ (and γ) is high, any new
node tends to connect to a node close to the current net-
work origin, in the sense of the hop distance, regardless
of the Euclidean distance. The diameter of the graph is
then lower. This also creates very popular nodes, which
decreases β. Concerning the links, new extra links tend
to connect popular nodes to distant nodes in order to
decrease the average hop distance to the current origin.
Therefore, triangles are less profitable, and the clustering
coefficient decreases.

Generation based on United States population. Using
the underlying geometry of our model, we have generated
graphs where the nodes are distributed according the US
population (based on the 1990 census). This approach is
particularly relevant since Yook et al. [13] have shown cor-
relation between the localization of the population and of
the routers. We observe in Figures 8 and 9, and in Ta-
ble 3, that the behavior is similar to the uniform distri-
bution case on the unit square [0, 1]2 and gives satisfying
pictures of the network.3 Note that thanks to step 2 of our
generation procedure, extra long links are created across
the US (much longer than θ), in order to improve commu-
nication performance between the two coasts. This was
not the case in the previous FKP and FKP2 models. Note
that the population distribution biases the degree distri-
bution.

3 See for instance:
http://www.caida.org/tools/visualization/mapnet/
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n θ = γ deg Clust exm ex D h(·, ·) β ACC

20 0.001 3.50 0.2619 3 3.950 5 2.345 0.42 0.43
20 0.030 3.50 0.2444 3 3.850 5 2.235 0.72 0.75
50 0.001 3.80 0.2519 4 5.560 7 3.186 0.98 0.80
50 0.030 3.80 0.2305 4 5.400 7 3.064 0.88 0.76

100 0.001 3.90 0.2268 5 6.850 9 3.862 1.27 0.89
100 0.030 3.90 0.2217 5 6.660 9 3.663 1.27 0.87
200 0.001 3.95 0.2378 5 7.565 10 4.499 1.54 0.89
200 0.030 3.95 0.1992 5 6.830 9 4.129 1.45 0.95
500 0.001 3.98 0.2038 6 9.070 12 5.495 1.85 0.92
500 0.030 3.98 0.1910 5 7.480 9 4.864 1.77 0.94

1000 0.001 3.99 0.2186 7 10.436 14 6.240 1.94 0.93
1000 0.030 3.99 0.1887 6 8.510 11 5.377 2.02 0.94
2000 0.001 3.99 0.2186 7 10.436 14 6.240 2.14 0.93
2000 0.030 3.99 0.1798 6 8.773 11 5.821 2.12 0.96

AS graph 4.18 0.22 —– 7 10 3.62 2.1 >0.96

IR graph 2.8 0.03 —– 20 30 9.51 2.1 (?) >0.96

Table 1. Measurements on our random graph models with k = 1 and q = 1, compared with the measurements made on real
AS and IR graphs.

n k q deg Clust exm ex D h(·, ·) β ACC

100 1 0 1.98 0 6 8.94 11 5.379 1.85 0.96
100 2 0 3.94 0.2563 4 5.61 7 3.714 1.92 0.95
200 1 0 1.99 0 6 9.36 12 5.884 1.93 0.97
200 2 0 3.97 0.2931 4 6.42 8 4.190 2.03 0.98
500 1 0 2 0 7 10.15 13 6.521 2.16 0.98
500 2 0 4 0.2495 5 7.218 9 4.886 2.21 0.98

1000 1 0 2 0 8 11.4 15 7.018 2.08 0.98
1000 2 0 4 0.2538 5 7.75 10 5.289 2.32 0.98

Table 2. Measurements on random FKP graphs (k = 1), and FKP2 graphs (k = 2) with θ = 0.03.

n k q deg Clust exm ex D h(·, ·) β ACC

1000 1 1 3.99 0.2081 5 7.103 9 4.364 2.46 0.91

Table 3. Measurements on our random graph model based on the US population distribution, with θ = γ = 0.03.

4 Conclusion and Summary

In this article, we have shown the relevance of a multi-
criteria greedy optimization approach as suggested in [5],
to model Internet topology. This multicriteria greedy op-
timization approach provides a plausible economical ex-
planation of the observations made of the Internet, such
as the power law on degrees. Another interesting point is
the natural geographic representation of this model which
makes it easy to read and interpret. Note also that it
is still sufficiently simple, so that theoretical descriptions
may not be out of reach. Some peculiarities of our model,
such as the clustering coefficient increasing as the diam-
eter grows, may also help to determine the relationships
between the parameters: small world does not necessarily
imply high clustering coefficient.

Currently, the main weakness of our model is its gen-
eration time. We are currently working on a new imple-
mentation taking advantage of the underlying geometry

to decrease the processing time from O(n4) time (present
implementation) down to O(n2+ε). Another issue is the
relatively small number of degree 1 nodes in comparison
with the Internet.

We also want to stress that the current parameters
used to validate network models may not be appropriate.
Some relationships between them are known. But the in-
dividual relevance of the parameter probably depends on
the target application. It is also clear that because of its
technological complexity and dynamic, the Internet will
certainly not be modeled by one concept alone (prefer-
ential attachment [1], imitation [9], or trade-off optimiza-
tion [5],...). For instance, these different processes may in-
fluence the structure of the Internet at different levels: e.g.,
trade-off optimization at the router level, preferential at-
tachment at the AS level, and imitation at the web level;
we may also have to consider other kind of levels. One will
probably need to mix these concepts with others in oder
to obtain a satisfying behavior.
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Figure 1. The exponent β as a function of θ in our model.
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standard deviations are ±10%, and typical values are ±5%.
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Figure 7. Average hop distance as a function of θ in our
model.

Figure 8. An example of a random graph generated by our
model with the US population distribution, with n = 1000
nodes, k = 1, q = 1, and θ = γ = 0.03. Each node is repre-
sented by a small disc whose diameter is proportional to its
degree.
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Figure 9. Observed power law on degrees in our random graph
models based on US population distribution, with n = 1000
nodes, k = 1, q = 1, and θ = γ = 0.03.
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θ = γ = 0.001.

θ = γ = 0.03.

Figure 10. Two generated graphs of 500 nodes, with k = 1
and q = 1 and different values for θ and γ.


