ENERGY IN THE CONTEXT OF COMPLEX ADAPTIVE SYSTEMS: PREDATOR-PREY DYNAMICS

Mirsad Hadzikadic and Ted Carmichael UNC Charlotte

Complex Systems Institute

COLLEGE of COMPUTING and INFORMATICS COMPLEX SYSTEMS INSTITUTE

About the CSI

Academics

Centers

Center for Advanced Research in the Humanities

Digital Humanities -Call for Proposals

Complexity Laboratory

Defense Computing Center

Collaborators

Projects

Papers

People

.....

Research

Contact Information

Links

Welcome to the Complex Systems Institute. The CSI is a multi-disciplinary, university-wide research center located at the University of North Carolina at Charlotte. The CSI provides a home for researchers who cross disciplinary boundaries in search of holistic answers. The current faculty come from areas as diverse as: Computing, Political Science, Sociology, Business, Biology, Communications, Philosophy, Theatre, Language, and Health and Human Services. *Read more*

Events

Home

- UNC Charlotte to hold Forum on the Future of Complex Systems Research and Applications
- Paul Youngman to deliver keynote address at the NanoSURE symposium at UNC Charlotte.
- Course on Agent-based Modeling for Public Policy at the 2010 APSA annual meeting
- Has Jeff Hawkins found the Rosetta Stone of Intelligence?; a talk by Dr. David Bashor. Friday, February 19th at 2:30 pm. in Woodward 441.

News

- Swarmfest 2010 Santa Fe, New Mexico, June 20-22.
- CFP extended! 2010 AAAI CAS Symposium
- Paper presented at the AAMAS Conference, Toronto, Canada
- 2010 AAAI CAS Fall Symposium
- · Paper accepted in the journal Complexity

more

Sample Recent Projects

Energy

- General-purpose CAS development tool
 - Minimal set of agents and their behavior defined
 - Mapping to different application domains
 - The CAS tool becomes the language and instrument of collaboration
- CAS and Network Science
- Recurrent Activation

Recurrent Activation: Phase Transition & Connectivity

- The network can become "over connected"
 - If we *initialize* the model with a certain level of connectivity and let it grow from there
 - P_r becomes small if we start out with higher levels of connectivity

Parameter shift: τ (refractory time)

- Data plotted on log-log graph
- □ Drop off as τ increases shows that self-sustaining phenomena become increasingly rare with high τ 1 = $\diamond \diamond \infty$
- "Tail region"
 - Straight line on log-log graph
 - This is the signature of a "power law" decay

Parameter shift: ρ

- More complicated relationship to ρ
- Given low τ (triangle)
 Local connections are sufficient
- Given high τ (circle)
 Local connections are optimal
- Possible that having too many long range connections is bad for emergent dynamics
 - Would "Small-World" graphs be better? (Watts & Strogatz, 1998)

Energy

- Provides focus, evaluation, and (to a large extent) definition of the system
- Given the network fundamental principles, some types of configuration are more likely than others
- More constrained, smaller search space
- Transfer from neighbor to neighbor flow
- Just like a budget that serves as a strategic plan, energy plays the role of an enabler, motivation, purpose, focus of communication

Information

- Energy flow -> patterns
- Qualification, quantification, and attribution of patterns -> information as a language of energy
- Information as energy

Energy and Information

- 9
- A driving force for self-organization and emergence
- □ E.g., brokers introduce efficiency in the system
- Most CAS applications do not focus on energy and information
- Instead, they focus on the definition of agents and their rules of behavior

- What is the right level of abstraction?
- Where do the rules of behavior come from? Serve what purpose?
- What powers the agents? Distribution of power? Likelihood of outcomes?
- How do we evaluate the goodness/fitness of the resulting society?
- One vs. many energy and information sources

Lotka-Volterra (LV) Equations

11

- First proposed in 1925-1926, the Lotka-Volterra equations are a pair of first-order, non-linear differential equations that govern the relationship between two types of interacting species
- The foundation of understanding of ecology dynamics for predatorprey populations
- Mathematically robust, widely accepted, general in nature
- □ Assumptions:
 - Unlimited food availability to the prey population
 - The predator population depends entirely on the prey for food
 - The natural growth rate for both populations are proportional to their sizes
 - The environment does not change to the benefit of either population

LV Graphical Representation

12

time

Agent-Based Modeling Approach

A Complex Adaptive System (CAS) of two species interacting in a predator-prey relationship

- Incorporates more realistic, stochastic elements than one would find in a purely mathematical solution
- Captures the cyclical nature of this dynamic

Experiment

- Changed Assumption 1: the food available to the prey population is adjustable
- □ The simulation environment is a torus grid with 151*151 grid cells
- Four populations in this model:
 - Food (generated by the simulation stochastically as a constant rate per grid cell)
 - Fish (the prey population)
 - Eggs (generated by the fish as a positive function of the amount of food consumed)
 - Predators (reproduce as a positive function of the number of fish consumed)
- Not intended to be thoroughly realistic, but rather to capture the basic properties of the predator-prey-food relationship
 - The environment is homogeneous, without any variations in sea temperature, depth, or ocean currents
 - Each tropic level is represented by a single species, without the complex dynamics of functionally similar, individual species

- Both the fish and the predator populations are homogeneous, different only in their current state variables:
 - Individual age
 - x-y coordinates
 - Current amount of food consumed

Results

- When the simulation is run with a baseline test-case (food production set to 20% chance of positive growth per cell, per simulation time step) it settles to an equilibrium relationship between the fish and predator populations
- The fish population is somewhat more variable than the predators, stabilizing generally between ~1100 and ~1200 individuals. The predator population stabilizes at ~170 individuals

3000 simulation time-steps showing population counts and average age at 20%, 30% and 40% food levels (1000 steps per level)

