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Machine Learning models are increasingly more employed to
iIn the humanitarian sector to inform decision-making

Ensure fairness, transparency, and accountability in model
development and deployment
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Census Dataset
n=11,393

Gender
Female 51.1% 38.1%
Male 48.4% 61.8%
Age
17-24 7.9% 43.1%
25-34 11.0% 31.2%
35-44 13.8% 13.6%
45-54 16.1% 7.1%
55-64 13.3% 4.5%
65+ 24.5% 0.3%
Occupation
Employed 77% 43.9%
Unemployed 8.7% 7.4%
Student 14.2% 48.5%
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Well we can predict unemployment with 74% AUROC. Cool!
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Can we ensure that the machine learning model is fair?

Can we avoid discrimination®? )
aimed at providing

educational/training
opportunities
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With Fairness Through Unawareness we do not avoid discrimination



What is “Fairness”?

=
O
-
<
oc
L
L
-

EQUALITY




Motivating Idea:

Probabilistic Notion:

FAIRNESS TREE

Do you want to be fair based on disparate representation

(0] ]

based on disparate errors of your system?

Representation

Do you need to select equal number of people from each group
OR

proportional to their percentage in the overall population?

Equal Numbers ‘ Proportional

Equal Selection Parity

Everyone without regard for
actual outcome

Demographic Pa

rity

Do you trust the labels?

Are your interventions punitive or assistive?

Punitive
(could hurt individuals)

Assistive
(will help individuals)

Among which group are you most

concerned with ensuring predictive equity?

Intervention NOT
warranted

False Positives/Group Size
Parity

What are your chances of being
wrongly denied bail just given
your race?

P(?’:l,Y=0|G)

People for whom
intervention is taken

False Discovery Rate
Parity

Among people denied bail, what
are the chances you're innocent
given your race?

P(Y=0|G,y"=1)

False Positive Rate
Parity

Among people who should be
granted bail, what are the chances
you were denied bail given your
race?

P(§'=1|G,Y=o)

Can you intervene with most people

with need or only a small fraction?

Small Fraction

Counterfactual Fairness

Most People

Everyone without regard
for actual need

Among which group are you most

concerned with ensuring predictive equity?

People with need

False Negatives/Group Size

Recall (or True Positive Parity

Rate) Parity*

What are your chances of being
wrongly left out of assistance
given your gender?

If we can only provide assistance
to a small fraction of people with
need, attempt to ensure it is
distributed in a representative way

P(Y =116y =1) P(Y’:O,Y=1|G)

assistance

False Omission Rate
Parity

Among people who don't receive
assistance, what are the chances
you had need given your gender?

P(Y=1|G,§'=o)

People not receiving

False Negative Rate
Parity

Among people with need, what are
your chances you don't receive
assistance given your gender?

P(§’=0|G,Y=1)

Pedro Saleiro, Benedict Kuester, Abby Stevens, Ari Anisfeld, Loren Hinkson, Jesse London, Rayid Ghani, Aequitas: A Bias and Fairness Audit Toolkit,
arXiv preprint arXiv:1811.05577 (2018)



FAIRNESS TREE
(Zoomed in)
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punitive or assistive?
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(will help individuals)
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Small Fraction Most People

Among which group are you

Among which group are you
most concerned with ensuring
predictive equity?

most concerned with ensuring
predictive equity?

Everyone without regard |People for whom Intervention Everyone without People NOT People with
for actual outcome intervention is taken NOT warranted regard for actual need receiving assistance actual need

FP/GS Parity FDR Parity FPR Parity Recall Parity* FN/GS Parity FOR Parity FNR Parity

# False Positives False Discovery Rate False Positive Rate True Positive Rate # False Negatives False Omission Rate False Negative Rate
Group Size or Sensitivity Group Size
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FAIRNESS TREE
(Zoomed In)

Are your interventions

punitive or assistive?

Punitive Assistive
(could hurt individuals) (will help individuals)

Impossible to satisfy more that one fairness metrics at once

“Fairness and Machine Learning”, S. Barocas, M. Hardt, A. Narayanan, 2022, https://fairmlbook.org/

Among which group are you Among which group are you
most concerned with ensuring most concerned with ensuring
predictive equity? predictive equity?

Everyone without regard |People for whom Intervention Everyone without People NOT People with
for actual outcome intervention is taken NOT warranted regard for actual need receiving assistance actual need
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FOR Parity FNR Parity

FP/GS Parity FDR Parity FPR Parity Recall Parity* FN/GS Parity

# False Positives False Discovery Rate False Positive Rate True Positive Rate # False Negatives False Omission Rate Lalse Negative Rate
Group Size or Sensitivity Group Size :



Parity of Opportunity

FNR,
EN Rre f.group

Pr[Y=0|Y=1AG=¢]
Pr [)}=O|Y= ING=ref. group]

FNR, disp.

where Yand Y represent the real and predicted target values respectively (1 represents the ‘unemployed’, o the
employed)

Disparity threshold 80% with respect to a reference group



Adaptive Threshold

precision - recall

Fs=(1+ 32) . with B at 0.5 to favour precision
(8% - precision) + recall
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Demo NoDemo Demo+AT. NoDemo+AT.
Global Accuracy (Metric: AUC(std))
Baseline .50 .50 .50 .50
State of the Art - 61(.01) (%) - -
Our Approach 74(.02) 71(.02) 74(.02) 71(.02)
Precision and Recall
Precision 16(.02) 18(.01) .26(.05) .25(.03)
Recall .56(.05) 48(.02) .21(.05) .22(.04)
Demographic accuracy (Metric: AUC(std))
Gender (M) .66(.05) 64(.04) 66(.05) 64(.04)
Gender (F) .78(.02) .76(.02) .78(.02) .76(.02)
Age (17-24) .70(.08) .69(.08) .70(.08) .69(.08)
Age (25-34) .66(.05) 65(.05) 66(.05) 65(.05)
Age (35-44) 74(.09) .73(.08) 74(.09) 73(.08)
Age (45-54) 61(.17) 54(.16) 61(.17) 54(.16)
Age (55+) 46(.31) 46(.29) 46(.31) 46(.29)
Fairness (Metric: Fva;zi, )
Gender (ref.class: Male)
Female A47(.11) 58(.14) 1.0(.07) 1.02(.14)
Age (ref.class: 17-24)
25-34 .35(.08) 62(.12) .75(.09) .80(.08)
35-44 .26(.12) 49(.2) 71(.09) 73(.1)
45-54 41(.24) .82(.35) .82(.17) .84(.19)
55+ .59(.36) 99(.42) .82(.18) 91(.19)
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Gender (ref.class: Male)

Female
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26(.12)
41(.24)
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.84(.19)
91(.19)
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Gender fairness per region in the NoDemo (left) and NoDemo+Thresh. (right) models. Gender fairness
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is computed as the FNR of females in relation to that of males. The color extremities are both unfair

(Color figure online)
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Conclusions

Fairness through unawareness does not suffice

Models with good overall accuracy aren’t always efficient in humanitarian
domain

Easily generalisable approach to any fairness metrics, demographic
feature, and digital data
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Description #
Features

Liked Pages 2,063,944

Liked Pages per Category To express how much a participant is interested in different categories of pages, we compute the number of pages he gave like 1.553
to inside each Category.

Normalised Categories: As the participants’ activity can greatly vary, we normalise the Liked Pages per Category to have sum 1. 1.553
Median Page Popularity This index shows how much a participant likes popular pages. The popularity of a Page is the number of users that gave like to it, 1

as reported by Facebook in the Page profile.

Standard Deviation of Page Popularity 1
Median Category Popularity This index shows how much a participant likes popular categories. 1
Total number of Page likes One feature containing the total number of pages liked by the participant. 1

Total number of liked Categories One feature containing the total number of categories with pages liked by the participant. 1



Machine Learning and Vulnerable Populations

Precision = Of all the positives
how many are truly positives?
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Recall = Of the real positives,
how many are predicted
correctly”? +
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LightGBM
10-fold stratified x validation

balanced weighting
10-fold cv“ 1st fold out
/
2nd fold out
/4 L
/
/
/
-
\ 10th fold out o
’ Demo+Ad.thr¢'sh. Emodel
; NoDemo+Ad.thrgsh.: mode,
| Likes related feat. : v
0 Demographic attrib. :
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Demo model
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