Identifying vaccine-mechanism bias in mathematical models of vaccine
impact: the case of tuberculosis
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Background: Despite the decay in Tuberculosis (TB) incidence and mortality achieved world-
wide since 1990 [3], its yearly rate of reduction is arguably too slow to meet the goal settled by the
World Health Organization (WHO) in the End-TB strategy, which consists of completing a reduc-
tion of TB incidence and mortality rates by 90% and 95%, between 2015 and 2035 [8]. Instead,
during 2020, and for the first time in decades, the world suffered an increase in global TB burden
levels with respect to previous years, while, during that same year, the WHO estimated that TB
was the cause of death of more than 1.5 million people worldwide, combining HIV negative and
positive cases [5].

The cause of this increase was the irruption of the COVID-19 pandemics, which threatens,
in countries like India or Indonesia, to raise the TB death toll back to even higher levels in
the next few years [1, 7]. This issue, alongside with the ever-increasing rates of emergence of
drug resistance [4], evidence the need of new epidemiological interventions and tools against TB.
Among those tools and interventions, the development of a new and better vaccine than the current
bacillus Calmette-Guerin (BCG) seems necessary, as in the former, the efficacy against the more
transmissible respiratory forms of the disease in young adults is disputed [2].

For such a task, specially on TB, where several candidates are under development, a robust im-
pact forecast which is based on epidemiological model arises as a powerfully tool to help evaluating
those vaccines before introducing them in the general population. Nonetheless, in the development
of vaccines against TB, a number of factors represent burdensome difficulties for the design and
interpretation of randomized control trials (RCTs) of vaccine efficacy. Among them, the com-
plexity of the transmission chain of TB allows the co-existence of several routes to disease that
can be observed within the populations from where vaccine efficacy trial participants are sampled.
Ultimately, this makes it difficult to derive mechanistic descriptions of the vaccines in terms of the
mathematical model if only trial-derived readouts of vaccine efficacy are used. This happens since,
intuitively, the same efficacy readouts may lean on the ability of a vaccine to arrest only some, but
not all, the possible routes to disease. This increases uncertainty in evaluations of vaccine impact
based on transmission models, since different vaccine descriptions of the same efficacy readout
typically lead to different impact forecasts.

Methods:  Aiming to address some of the difficulties in translating real RCTs results to spread-
ing models, in this work, we develop a Bayesian framework to evaluate the relative compatibility of
different vaccine descriptions with the observations emanating from a randomized clinical trial of
vaccine efficacy. This offers an unbiased framework to estimate vaccine impact even when the spe-
cific mechanisms of action of the given vaccine are not explicitly known, providing a more agnostic
impact evaluation of those vaccines.

The method we propose combines in-silico trials of the real RCT with a Bayesian framework
that allows to capture the realtive compatibility of the vaccine descriptions with the real outcome
of the trial. For this, we first proposed 7 different vaccine descriptions that capture the three
routes to disease that might be observed in TB and in a IGRA-positive trial, which are related to
natural TB history, and then simulated each one of them in the context of the RCT. Then, we
compute the relative compatibility of each vaccine descriptions with the real results along with



the most probable intrinsic-efficacy value (¢) which can be used directly in the spreading models
to model such a vaccine. Using our methodology, we analyzed the results reported for the vaccine
M72/AS01g clinical trial as a case study [6].

Results: We applied our bayesian framework to the case study in order to weight the rel-
ative compatibility of each one of the possible mechanistic effects of the vaccine that might be
observed in an IGRA-positive trial. Figure 1 shows the core results of this procedure in which,
first, we produced in-silico simulations for a myriad of possible intrinsic-vaccine efficacy (those
are the spreading model-related efficacies of the vaccine) in the RCT, which are reported in the
clouds. Then, we applied the Bayes rule to those clouds for deriving the posterior probabilities of
both the intrinsic efficacy values, that are introduced later in spreading models, and the relative
compatibility of the whole mechanistic decription with the real efficacy of VEg;s = 49.7% observed
in the trial.

Those posterior probabilities, that are shown in Figure 1 B and C, enables the possibility
to forecast the impact of the vaccine using an spreading model, as we get the most compatible
value of e, that captures the intrinsic efficacy of the vaccine in the model, along with the overall
compatibility of this description with the real outcome of the trial. Moreover, we derived an
agnostic estimate of the impact of the vaccine using the posterior probabilities reported in Figure
1 B to produce a weighted forecast that is agnostic to the mechanistic description of the vaccine.

Conclusions: This work enlightens the problem of translating the outcome of TB vaccine’s
RCTs to the spreading models while aiming to produce robust forecast impact evaluations. We
shown here that, even in cases with high uncertainty, such as the case study, a clean-well designed
procedure allows to disentangle the effect of the vaccine at the mechanistic level. This, ultimately,
leads to the possibility of producing agnostic impact evaluation of new vaccines, which reduces
the gap betweeen reality and models. Moreover, the type of RCTs considered here, conducted
on IGRA-positive individuals, emerged as a promising design architecture after the encouraging
results reported for the vaccine M72/AS01g clinical trial, as they might also be analyzed with
this -or a similar- method to improve our knowledge of the effect of a new vaccine, both at the
biological level, at the model level, and at the population level.
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Figure 1: Bayesian analysis of possible modeling architectures underlying a trial-derived observa-
tion of vaccine efficacy. A: Absolute frequency density clouds of efficacy values VEgy;; obtained
in sets of N = 2- 108 clinical trial simulations per model, uniformly distributed across the in-
trinsic vaccine efficacy parameter £(10000 points for each e value, yielding N = 2 - 105 points
inside the cloud). Red horizontal lines mark the PoD efficacy observed in the M72/AS01g trial
VEg4s = 49.7%. B: Marginal posteriors P(i|[VEg;s = 49.7%), capturing the relative compatibil-
ity of each model with respect to the efficacy observed in the M72ASO1E trial. C: Distribution
P(e|VEg;s = 49.7%, 1) of the intrinsic vaccine efficacy parameter ¢ in each model type, given the
observed efficacy VEg;; = 49.7%, along with mean and 95% confidence intervals associated to
them. For M3, the CI was omitted, for it spans the entire range ¢ € [0, 1], as the model fails
systematically to produce simulation instances compatible with the observed VEg;s = 49.7%.



