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Abstract

In this work we used complex network theory to study the dynamics of time-dependent functional brain networks

obtained from functional magnetic resonance imaging (fMRI) data during conscious wakefulness and states of reduced

consciousness. In order to detect heterogeneous temporal networks communities, we developed a new benchmark to set

the optimal parameters of a multilayer modularity maximization algorithm. Then we measured the size and flexibility of

the largest multilayer module. We found that unconsciousness reconfigured network flexibility and reduced the size of the

largest spatiotemporal module, which we identified with the dynamic core. Our results represent a first characterization

of modular brain network dynamics during states of unconsciousness measured with fMRI, adding support to the dynamic

core hypothesis of human consciousness.
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Introduction
One of the most influential hypothesis concerning the relationship between conscious experience and neural processes in the

human brain is Edelman and Tononi’s dynamic core hypothesis [2]. According to this hypothesis, consciousness must be

understood as a process that unfolds over time (the “dynamic core”) comprising an ever-changing network of regions that

exchange information over relatively short time spans. The dynamic core should present a very large number of possible

configurations, corresponding to the multitude of available conscious experiences. However, these configurations must also

be constrained to represent highly integrated brain states, so the dynamic core consists of a sequence exploring an ample

repertoire of highly integrated brain states.

The theory of complex networks provides a framework to directly evaluate the presence of integration and segregation

in neuroimaging data acquired during different states of consciousness [3]. A sequence of brain states can be represented as

a multilayer network, with each layer encoding transient functional interactions between brain regions during a given time

period [4], and the dynamic core can be represented as a time-dependent module evolving in this network. Over the last years,

modularity maximization algorithms have been applied to multilayer networks to reveal the rapid and transient structure

of whole-brain dynamic networks. However, the relationship between consciousness and the modular structure of multilayer

brain networks remains to be investigated.

To clarify this relationship, we constructed multilayer connectivity networks from functional magnetic resonance imaging

(fMRI) recordings acquired during the different stages of human non-rapid eye movement (NREM) sleep, and under the

effect of propofol, a general anesthetic which increases inhibitory neurotransmission. Our main purpose was to obtain the

time-dependent modular structure of these networks using the multilayer Louvain algorithm [9], a method with several free

parameters related to the connectivity strength between temporal layers, and the characteristic size of the detected modules.

Previous reports using this algorithm either employed an ad-hoc choice of parameter values, or performed an exhaustive

exploration of parameter space [4, 6]. We introduced a new benchmark for the detection of modules in time-dependent

networks with scale-free degree and module size distributions, adapted from a benchmark developed for static networks [5].
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After parameter selection using this method, we applied the multilayer Louvain algorithm to obtain the time-dependent

modular structure of fMRI functional connectivity networks.

Materials & Methods
Module detection in multilayer networks: We applied a generalized multilayer version of the Louvain algorithm to detect

and track modules over time (http://netwiki.amath.unc.edu/GenLouvain/GenLouvain).

Benchmark for time-dependent module detection: We first reproduced a benchmark for static complex modular

networks introduced by Lancichinetti et al. [5]. Then we created in this benchmark a temporal evolution through two different

dynamic processes adapted from Granell et al., 2015 [8]: merge-split and grow-shrink module dynamics. The combination of

these two processes allowed us to represent the most frequent behaviours seen in the dynamics of real modular systems. In

Figure 1 A the rewiring steps used to generate the dynamics of division and contraction of communities are shown, where the

colors of the nodes represent their final communities. Further details can be found in [1].

Node flexibility and the largest multilayer module: We defined two metrics based on the module membership

matrix Git given by the multilayer Louvain algorithm. First, we defined the flexibility of a node within a certain multilayer

module M , Fi, as the normalized number of times that node entered or left M :

Fi =
|{t : Mit ̸= Mit+1}|

T
(1)

where Mit indicates whether node i at time t belongs to module M , and T is the total number time steps. We computed

Fi for the largest multilayer module. We also defined the size of this module (LMM) as the normalized size of the largest

module in Git,

LMM =
maxi |Git|

NT
(2)

where N is the number of nodes and T the total number of volumes in the recording, so NT is the maximum possible size for

the largest module.

More information related to the fMRI data sets, the construction of dynamic networks from fMRI data and statistical

analyses are available in [1].

Results

Time-dependent benchmark and parameter selection: We investigated the performance of the multilayer Louvain

algorithm [9] based on introducing equally weighted (ω) connections between consecutive temporal layers and equal resolution

parameters across layers (γ). Thus, the module detection algorithm depended only on these two parameters. In Figure

1 B we introduced a grid of γ and ω values, and for each pair of values we measured the Rand index between heuristic

approximations to the ground-truth modules and those detected using the multilayer Louvain algorithm, averaging the results

over 500 independent realizations.

The optimal parameters obtained following this procedure were γ = 0.55 and ω = 1 for both benchmarks (values are

indicated as black boxes in Figure 1 B). Then, in Figure 1 C it is shown the modular structure detected by the multilayer

Louvain algorithm using the optimal parameters for merge and split processes. The red lines indicate the expected distribution

of module membership labels.

Modular structure of dynamic brain connectivity networks: We applied the multilayer Louvain algorithm using

the optimal parameters inferred from the benchmarks to dynamic functional connectivity networks obtained from fMRI data.

We computed and compared the flexibility of nodes within the largest multilayer module between wakefulness and each sleep

stag. We observed that the majority of nodes decreased their flexibility during sleep, and that regions presenting decreased

flexibility during sleep were related to sensory perception, and also included subcortical regions that serve as intermediate

stages for the propagation of sensory information towards the cortex, such as the thalamus. We also performed the same

analysis and statistical comparison for wakefulness vs. propofol sedation and anesthesia, without finding significant results.

Further details can be found in [1].

Finally, we compared the regional probability of belonging to the largest multilayer module in wakefulness vs. sleep, and

propofol-induced sedation (S) and loss of consciousness (LOC). Only statistical comparisons between wakefulness, N3 and

LOC yielded significant results. Figure 1 D presents a comparison of these changes. While changes were more widespread and

significant during N3 sleep, LOC was also associated with decreases in sensorimotor regions, and increases in frontal regions.
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In Figure 1 E, a scatter plot of the change in the probability of belonging to the largest multilayer module for LOC vs. N3

shows that even though less regions were significant for LOC, the pattern of changes was similar to that measured during N3

sleep (R=0.39, p<0.00001). Also, both N3 (0.411±0.011; mean±standard error) and LOC (0.347±0.013) were characterized

by smaller sizes of their largest multilayer modules relative to wakefulness (0.446±0.005 and 0.397±0.009 for the sleep and

propofol baseline, respectively), as shown in Figure 1 F.

Figure 1: [A-C] Benchmark for time-dependent heterogeneous networks based constructed from two dynamic processes
(division and contraction). [D-F] Application of the optimized algorithm on data sets.

Discussion
We investigated for the first time modular brain network dynamics during states of unconsciousness, finding converging

evidence of a reconfiguration of the largest multilayer module during deep sleep and general anesthesia. We interpreted

these changes in the light of the dynamic core theory, concluding that unconsciousness results in its fragmentation in spite of

preserved stability. Future studies should assess whole-brain dynamics simultaneously with different methods to understand

whether the dynamic core fluctuates over scales inaccessible to fMRI, and whether these fluctuations are manifest at the

behavioral and cognitive levels.

References

[1] del Pozo S. M., Laufs H., Bonhomme V., Laureys S., Balenzuela P. and Tagliazucchi E. Unconsciousness reconfigures modular brain network

dynamics Chaos 31, 093117, 2021.https://doi.org/10.1063/5.0046047

[2] Edelman, Gerald M and Tononi, Giulio. Reentry and the dynamic core: neural correlates of conscious experience mit Press Cambridge,Neural

correlates of consciousness: Empirical and conceptual questions, 139 (2000).

[3] Sporns, Olaf. Network attributes for segregation and integration in the human brain Current opinion in neurobiology Elsevier, 23, 162 (2013)

[4] Muldoon, Sarah Feldt and Bassett, Danielle S. Philosophy of Science, University of Chicago Press Chicago, IL 83, 710 (2016).

[5] Lancichinetti, Andrea and Fortunato, Santo and Radicchi, Filippo. Benchmark graphs for testing community detection algorithms Physical

review E 78, 046110 (2008)

[6] Bassett, Danielle S and Wymbs, Nicholas F and Porter, Mason A and Mucha, Peter J and Carlson, Jean M and Grafton, Scott T. Dynamic

reconfiguration of human brain networks during learning National Acad Sciences 19, 566 (2018)

[7] Benjamini, Yoav and Hochberg, Yosef. Controlling the false discovery rate: a practical and powerful approach to multiple testing Wiley Online

Library (1995).

[8] Granell, Clara and Darst, Richard K and Arenas, Alex and Fortunato, Santo and Gómez, Sergio. Benchmark model to assess community
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