Assessing the effectiveness of perimeter lockdowns at the urban scale: the case of Madrid

Alfonso de Miguel Arribas ^{1,2} Alberto Aleta ^{1,2} Yamir Moreno ^{1,2,3}

¹Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain.

²Department of Theoretical Physics, University of Zaragoza, 50018, Zaragoza, Spain.

³Centai. Torino. Italy.

NetSci-X. Buenos Aires 2023

1/16

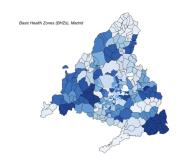
Background

Epidemiological context

Second wave of COVID-19 building up (September 2020).

Socioeconomic context

- Madrid wanted to avoid hard generalized lockdown, emergency state and any imposition from Central Government.
- Want to avoid "economic ruin" and sought for softer alternatives.



"Madrid belongs to everyone. Madrid is Spain inside Spain. What is Madrid if not Spain?" - Isabel Díaz de Ayuso, President of Autonomous Community of Madrid.

The strategy: Perimeter lockdowns for Basic Health Zones

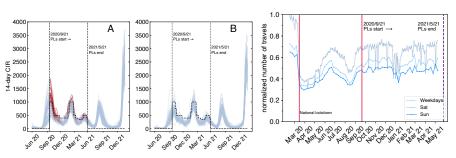
What are they?

PLs: Cut down mobility in-and-out of areas under risk BHZs: minimal areas with basic public health support.

from García-García et al. (2022)

- First round of lockdowns: Sep 23.
- 37 BHZs affected in the whole region.
- Time extension: 14 days or more...
- Prerrequisites?
 - 14 days cumulative incidence rate above 1000 cases per every 10⁵ inhabitants.
 - Increasing trend.
 - Observation of community spread.

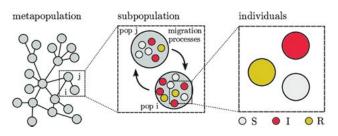
Framing the problem


Question

Is this a good control strategy?

Our work and aims

- Qualitative inspection of epidemiological data from Madrid.
- Devise a general, minimal and mechanistic model of perimeter lockdowns.
- Explore under which circumstances could work.


Inspection of real data

- Peak incidence & activation occurs around same time in 1st round.
- Literature confirmed that measures had no real effect.
- Threshold criterion? Moving like waves & some free zones above it.
- Highly synchronized time series + No meaningful effect on mobility.
 - --- Seems like a dubious realization of the strategy.

Framework: Network metapopulation

We built a data-driven metapopulation model for Madrid.

from Colizza & Vespignani (2008)

System: Nodes are entire populations and edges mobility are flows.

Epidemic: Homogeneous-mixing SIR within nodes.

Mobility: origin-destination matrices with real data from a pre-COVID-19 reference period.

Mobility parameter κ to control baseline flows ($\kappa \to 0$ no one moves).

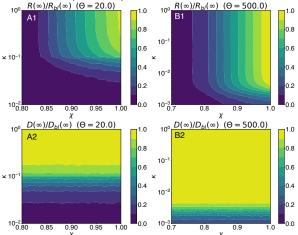
More modeling details

Response: How are perimeter lockdowns implemented?

- 14-day cumulative incidence rate per 10⁵ inhabitants as the monitoring variable.
- Set a risk threshold Θ . If 14d CIR $> \Theta$ in a district i: we activate perimeter lockdowns.
 - Mobility: $\kappa_{ij} = \kappa_{ji} = 0$ for i and $\forall j$.
 - Local transmission rate reduction fraction χ_i so that $\beta_i = \chi_i \beta$, where $\beta = R_0 T_I$.
- Below threshold districts: $\kappa \neq 0$, $\chi = 1$ (nothing happens).

Parameters:

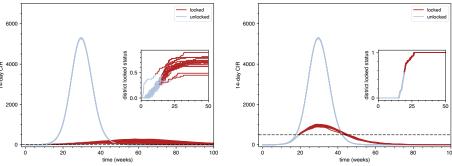
• $R_0 = 1.25 \ (< COVID-19's)$


Observables:

- Final prevalence.
- Fraction of locked districts.

(both quantities normalized to baseline scenario: unmitigated spreading)

Results: Hard to avoid a generalized lockdown


Left: Proactive strategy ($\Theta = 20$). Right: Reactive strategy ($\Theta = 500$).

- Reducing χ the most effective thing. (Hard to achieve?)
- Mobility κ ? Does nothing until ridiculously low values!

Results: Local outbreaks highly synchronized

- Doing something better than nothing (indeed).
- Local outbreaks are highly synchronized.

Conclusions

Take-home messages:

- \bullet Urban scale \to Small and well-interconnected systems \to outbreaks highly synchronized.
- If aim is to protect some parts of the system...
- Lockdowns have to be activated unrealistically soon and tight.
- Restricting mobility by itself does nothing.

Limitations (good and bad for the strategy's fate):

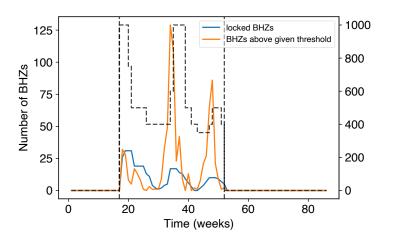
- SIR is too simplistic but it is a best-case scenario.
- Measures are activated instantaneously and with absolute compliance.
- Homogeneous-mixing at district level (future works).
- Markovian mobility and too-coarse resolution (future works).

THANKS FOR YOUR ATTENTION!

NetSci-X 2023, Buenos Aires

Universidad Zaragoza

Quick literature review


Santiago de Chile [Li et al. (2021)]:

- "localized lockdowns on their own are insufficient to control pandemic growth in the presence of indirect effects from contiguous neighboring areas that do not have lockdowns."
- "the epidemic is only controlled when generalized lockdowns are in place."

Madrid:

- Candel et al. (2020). (et al. includes Madrid's Public Health vice counselor) Tell and sell their management of the COVID-19 situation.
- Fontán-Vela et al. (2021): "According to our analysis, the decrease in the epidemic curve started before the impact of the perimeter lockdown could be reflected."
- García-García et al. (2022): "Our analysis suggests that the perimeter closures by Basic Health Zone did not have a significant effect on the epidemic curve in Madrid."
- Replies to Candel et al. (2020) harshly criticizing the propaganda.

Number of BHZs above threshold

- Apart from the strange moving threshold criterion...
- Huge number of free BHZs above threshold during successive waves (3rd and 4th global waves).

Epidemic model

Within each subpopulation the following reactions take place:

$$\boxed{S+I \to I+I} \tag{1}$$

with probability $P_i(S \rightarrow I) = 1 - (1 - R_0/(T_I N_i))^{I_i}$,

- \bullet R_0 is the basic reproduction number of the disease,
- T_I is the mean infectious time,
- \bullet N_i stands for the number of individuals in patch i, and
- \bullet I_i accounts for the number of infected individuals in such region.

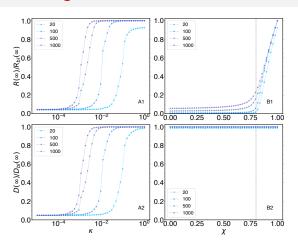
with probability $P(I \rightarrow R) = 1/T_I$.

New cases stochastically sampled from binomial distributions.

Process iterated with $\Delta t = 1$ day until absorbing state reached (I = 0).

Mobility model

Several approaches exist:


- Simple random walks assigning equal probability to traveling to any neighboring subpopulation.
- Degree-based travel, gravity, radiation models.
- Micro-mobility models (EPR and extensions).

Our approach here is fully data-driven:

- Data from mobility survey carried by the Spanish Ministry of Transport, Mobility and Urban Agenda. (https://www.mitma.gob.es/ministerio/covid-19/
 - evolucion-movilidad-big-data)
- Build OD matrices M: elements contain flow of travelers from i to j.
- Diffusion rate matrices. New travelers are extracted from multinomial distributions following rates:

$$D_{ij} = \begin{cases} \kappa \frac{M_{ij}}{\sum_{j} M_{ij}} & \text{if } i \neq j \\ 1 - \sum_{k \neq i} D_{ik} & \text{if } i = j \end{cases}$$
 (3)

Results: Phase diagrams

Left: fixed $\chi = 1$. Right: fixed $\kappa = 1$.

Θ: Restrictions should be activated very, very soon.

 κ : Mobility does nothing (until unrealistically low values).

 χ : Focus on transmissibility (but departed from already low R_0).