COMPLEXITY EMERGES IN MEASURES OF THE MARKING DYNAMICS IN FOOTBALL GAMES

ANDRES CHACOMA | IFEG | FAMAF | UNC

Line up:

- (1) A. Chacoma (andres.chacoma@gmail.com)
- (2) O. V. Billoni
- (3) M. N. Kuperman

^{1,2} Instituto de Física Enrique Gaviola, FAMAF, UNC. (Córdoba, ARG)

³ Instituto Balseiro, CAB, UNCuyo. (Bariloche, ARG)

Paper:

Chacoma, A., O. V. Billoni, and M. N. Kuperman. "Complexity emerges in measures of the marking dynamics in football games." *Physical Review E* 106, no. 4 (2022): 044308.

- (1) INTRODUCTION
- (2) MARKING DYNAMICS IN REAL GAMES
- (3) MODELING. MARKING DYNAMICS IN SIMULATED GAMES

- (2) MARKING DYNAMICS IN REAL GAMES
- (3) MODELING. MARKING DYNAMICS IN SIMULATED GAMES

How do we define marking?

-It is the set of individual and **collective coordinated** actions oriented to cover/control the **opponents** and the **free space** during the game. (Castelo, 1986; Queiroz, 1983; López Ramos, 1995).

Note players mark

- In defensive and offensive situations
- Close and far from the ball

How do we define marking?

-It is the set of individual and **collective coordinated** actions oriented to cover/control the **opponents** and the **free space** during the game. (Castelo, 1986; Queiroz, 1983; López Ramos, 1995).

Note players mark

- In defensive and offensive situations
- Close and far from the ball

How do players mark?

- Zonal marking
- Man to man
- Mixed, a combination of both

Note, the **proximity** among opponents **is key** to understanding the marking system.

How do we study the marking dynamics?

- At every second of the game, we define **temporal bipartite proximity network** representing the state of the marking.

- Links are established only between opponents if the distance between them is less than a threshold

How do we study the marking dynamics?

- At every second of the game, we define **temporal bipartite proximity network** representing the state of the marking.

- Links are established only between opponents if the distance between them is less than a threshold

Data

-Three football games (male), provided by *Metrica Co.* -Players' coordinates at every second of the game.

We observe

-Abrupt changes in the network structure during the game.

-Periods of high clusterization and high fragmentation.

-Changes in the network structure bear information on the evolution of the marking.

Time series analysis

-To analyze how this **structural change** evolves, we study the evolution of the **heterogeneity parameter**.

$$\kappa(t) = \frac{\langle \text{degree }^2 \rangle}{\langle \text{degree } \rangle}$$

-When K<2 the network is fragmented -When K>2 the network is clusterized

Note, κ(t) is a measure of the evolution of the marking.
The statistical properties of the series can be related to the statistical properties of the marking dynamics.

(2) MARKING DYNAMICS IN REAL GAMES

(3) MODELING. MARKING DYNAMICS IN SIMULATED GAMES

(2) MARKING DYNAMICS IN REAL GAMES

Tuning the threshold value

-Standardization: we tune the **threshold** value such that when the players are in their **average position**→ **K≈2**

-In the three analyzed games the value of the threshold is similar: 8 m, 8.5 m, 9 m.

In this game, Threshold: 8 meters

(2) MARKING DYNAMICS IN REAL GAMES

Tuning the threshold value

-Standardization: we tune the **threshold** value such that when the players are in their **average position**→ K≈2

-In the three analyzed games the value of the threshold is similar: 8 m, 8.5 m, 9 m.

The evolution of **k**

-<**κ>≈2** in the three analyzed games, similar scale

-High peaks \rightarrow big clusterization, special situations like corner kicks or free kicks

(2) MARKING DYNAMICS IN REAL GAMES

Tuning the threshold value

-Standardization: we tune the **threshold** value such that when the players are in their **average position**→ **K≈2**

-In the three analyzed games the value of the threshold is similar: 8 m, 8.5 m, 9 m.

The evolution of **k**

-<**κ>≈2** in the three analyzed games, similar scale

-High peaks \rightarrow big clusterization, special situations like corner kicks or free kicks

The successive increments: $I(t) = \kappa(t + 1) - \kappa(t)$

The data deviates from Gaussian behavior
Presence of heavy Tails
A decay in the PSD for low values of the freq.
Hurst exponent h≈0

Anti-persistency \rightarrow the players tend to return to their average position.

10

0

-10

Network of

×

players in their

average position

Avalanches in κ(t)

The event **lifetime T** as the duration of the event and the event **size S** as the integral under the curve.

We observe a power-law behavior in P(T), P(S), and $\langle S \rangle$ vs T.

The following relation between the exponents holds,

$$\frac{\alpha - 1}{\tau - 1} = \mu + 1$$

The average shape of the events follows a scaling law

$$\chi = T^{\mu}\rho(t/T)$$

The collapse exhibits the non-trivial **self-similarity** in $\kappa(t)$.

We define an event x as the consecutive points starting when κ >2 and ending when κ <2.

(2) MARKING DYNAMICS IN REAL GAMES

(3) MODELING. MARKING DYNAMICS IN SIMULATED GAMES

The bases

- (1) The players have action zones in the tactical scheme. Players are constraint to their action zones.
- (2) The movement of one player may depends on the positions of their teammates and opponents.

Player's action zone Ellipse in princi

Center: Average position

Ellipse radii: standard deviation in principal directions

The bases

- (1) The players have action zones in the tactical scheme. Players are constraint to their action zones.
- (2) The movement of one player may depends on the positions of their teammates and opponents.

The model

-Linear interactions: spring-like forces among the players and an anchor to their positions in the field.

$$\vec{a}_n = -\gamma_n \vec{v}_n + k_{bn} (\vec{b}_n - \vec{r}_n) + \sum_m k_{nm} (\vec{r}_m - \vec{r}_n)$$

The bases

- (1) The players have action zones in the tactical scheme. Players are constraint to their action zones.
- (2) The movement of one player may depends on the positions of their teammates and opponents.

The model

-Linear interactions: spring-like forces among the players and an anchor to their positions in the field.

$$\vec{a}_n = -\gamma_n \vec{v}_n + k_{bn} (\vec{b}_n - \vec{r}_n) + \sum_m' k_{nm} (\vec{r}_m - \vec{r}_n)$$

Fitting the model to the data

Simulating the collective players' movement

- Using the fitted parameters, we simulate a **system of stochastic differential equations** with Gaussian noise.

 $\begin{cases} d\vec{r}_{n} = \vec{v}_{n}dt \\ d\vec{v}_{n} = \left[-\left(k_{nb} + \sum_{m}' k_{nm}\right)\vec{r}_{n} + \sum_{m}' k_{nm}\vec{r}_{m} - \gamma_{n}\vec{v}_{n} + k_{nb}\vec{b}_{n} \right]dt + d\vec{W}_{n} \end{cases}$

-The simulated actions zones, approximates well to the real
-We observe, like in the empirical case, **anti persistency** in the time series K(t)

Simulating the collective players' movement

- Using the fitted parameters, we simulate a **system of stochastic differential equations** with Gaussian noise.

$$\begin{bmatrix} d\vec{r}_n = \vec{v}_n dt \\ d\vec{v}_n = \begin{bmatrix} -\left(k_{nb} + \sum_m' k_{nm}\right)\vec{r}_n + \sum_m' k_{nm}\vec{r}_m - \gamma_n\vec{v}_n + k_{nb}\vec{b}_n \end{bmatrix} dt + d\vec{W}_n$$

-The simulated actions zones, approximates well to the real

-We observe, like in the empirical case, **anti persistency** in the time series $\mathbf{K}(t)$

Avalanches

-We obtain statistical similarities between the empirical system and the model's outcomes.

-Stronger anti-persistency than the empirical case.

 \rightarrow The model works well in capturing the phenomenology of the marking dynamics

Summary

- Data analysis. The use of the temporal network to describe the marking dynamics allowed us to reduce the system multidimensionality to a single variable: κ(t). The statistical analysis of this variable was useful for unveiling and characterizing the complexity of the marking.
- Modeling. We proposed a parsimonious model for the players' motion equations based on two observations: (1) the existence of players' action zones; and (2) the interdependence of players' movements. We showed that the model's dynamics generate the statistical properties we observed in real football games.
- **Complexity and performance.** We know that when there is a lacking of complexity in the living system, something abnormal happens: the proliferation of cancer cells, the appearance of nervous system diseases, etc. In this sense, a lacking of complexity in the marking system may be related to a lacking of performance. We are currently working in this interesting topic.

THE END

Strong link between Cuti Romero y Haaland