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Drug repurposing

“The most fruitful basis for 
the discovery of a new drug 
is to start with an old one”

▪ Library screening: biochemical/pharmacological assays
▪ In-silico screening: chemoinformatics approaches / computational docking
▪ Prioritization tasks: data-mining of biochemical available data

▪ Known pharmacokinetics
▪ Known safety profiles
▪ Often already approved by regulatory 

agencies for human use
▪ Already approved by regulation 

agencies for human use

~40% of cost US$

Novel approaches are needed when there is no clear 
financial incentive for biopharma companies



Available data
Model organisms

Chemical compound

bioactive

Druggable 
target protein

Compounds: 91,699,023 (2,283,528 tested)
Substances: 223,181,033 (3,576,050 tested)
BioAssays: 1,218,668 (91 RNAi)
BioActivities: 230,658,885
Protein Targets: 10,182
Gene Targets: 19,779

Compounds: 1,928,903
BioActivities: 13,967,816
Protein Targets: 11,019
Publications: 62,501

FDA-approved: 2000
Experimental: >6000
Protein Targets: 4333

Urán Landaburu, Lionel. TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration. Nucleic Acids Research (2020)
Agüero, Fernán. Genomic-scale prioritization of drug targets: the TDR Targets database. Nature Reviews Drug Discovery (2008)



bioactivity

Our dataset

Known drug 
(dapsone) Known target

(DHPS1, mycobacterium leprae)

Known drug-protein interactions: 
Curated ground truth from 
evidence of interactions.

The problem: Inferring reliable predictions between potential drugs and useful targets.

Molecules involved in known interactions:  1M out of 7M (14%)
Targets involved in known interactions: 5.7k out of 560k (1%)

Low information density
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bioactivity

Our dataset

Known drug 
(dapsone) Known target

(DHPS1, mycobacterium leprae)

Known drug-protein interactions: 
Curated ground truth from 
evidence of interactions.

similarity

Potential drug

Molecular similarity measures: 
Relating compounds to one 
another through structure, not 
function.

The solution: Aggregate heterogeneous similarity measures to infer new drug-target 
interactions.

Molecules involved in known interactions:  1M out of 7M (14%)
Targets involved in known interactions: 5.7k out of 560k (1%)

Low information density

“Guilt by association”
Similar drugs interact 
with a similar set of 
targets.



In silico Drug Target Prioritization

Prioritization strategies:

Our approach: Complex networks as a mathematical framework 
to integrate data and perform prioritization tasks.



Our procedure

Multi-layered chemical space

Tanimoto layer: bitstring-based chemical similarities 
Scaffold layer:  structural scaffold similarities 
Target layer: chemical similarities from shared targets

Drug-Target associations

Weighted sum combines three layers
Network information within Laplace operator

Learn optimal network combination: 
Diffuse from training set, rank node 
scores, compare to test set, optimize 
recovery score.



Integrating a Multilayer Network



Learning by communities (divide and conquer)

Clustering on chemical layer: Louvain communities identified on Tanimoto 
similarity network (well connected, no training/validation info).

Community statistics:
● 6.1k out of 7.4k clusters contain at least 20 active drugs.
● 1.5M drugs represented within these clusters, 604k active drugs.

Split drug-target interactions: 
Training (70%)
Test (20%)
Validation (10%)

For each cluster:
○ Learn optimal network 

combination using training 
and test datasets.

○ Perform network diffusion 
with optimal parameters 
to recover validation set.



Why not train on a per-target basis?

Previous method: Individual learning. Per-target training severely 
underperformed existing methods due to low information density. Usable 
targets < 500.

New method benefit: Local learning based on topology. Per-cluster 
knowledge pool counteracts this disadvantage, yielding better training. 
Usable targets > 3000.

Split drug-target interactions: 
Training (70%)
Test (20%)
Validation (10%)

For each cluster:
○ Learn optimal network 

combination using training 
and test datasets.

○ Perform network diffusion 
with optimal parameters 
to recover validation set.



Ranking consolidation

Individual clusters have independent 
rankings. Drug scores are normalized 
over their clusters, then integrated.

Restructuring the ranking to reflect 
true recovery.

C1 C2 C3 C4



Comparison to existing implementations

diffuStats applies statistical considerations on result of network diffusion. 
Ranges and qualities of scores make consolidation unreliable.

Performs better in only 10k 
cluster-by-cluster 
prioritizations, compared to 
40k for our method.

Underperforms our method 
even without consolidating.

Second-best method to 
compare to will be the pure 
Tanimoto network.



Performance improvement
Second-best method: Non-hybridized, pure Tanimoto drug layer.

Ranking-oriented improvement: 
The hybrid approach prioritizes 
the top-5 score over others.

Concise recommendations for 
target-specific queries.

T5
T10

T20

T50
.
.
.



Performance improvement
The hybrid network outperforms individual network layers for start of ranking

Consistent results: Average 
recall shows trend parallel to 
that previously shown.

Cost function gives priority to 
first elements in ranking. 
Training the network 
parameters with an 
independent measure (not 
T5-T50) produced favorable 
results for T5-T10.



Summary

Divide and conquer: Previous methods (targetwise training) suffered 
from the curse of low information density: small training sets, even 
smaller validation sets. Dividing by cluster aggregates information by 
similar drugs, providing a strong basis for training and validating.

Heterogeneous knowledge pool: Tanimoto, scaffold and drug-target 
measures constitute qualitatively different meanings. Yet, they may be 
combined through training to provide higher recovery scores.

Prioritizing topmost ranking order: Our training acquires the network 
combination needed to improve top 5-10 scores, delivering only the 
most reliable predictions for queries.
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Appendix A:
Tanimoto similarity
Bitstring: Array indicating whether specific 
components or qualities exist within a 
molecule.

Jaccard coefficient: The significance of 
sharing components of the bitstring is 
evaluated using their intersection and 
union:

Flower, Darren R., On the Properties of Bit String-Based Measures of Chemical Similarity. (1998).

Network construction: Weighted, using 
scores > 0.8



Appendix B:
Scaffold similarity
Bemis-Murcko: 
Removing “layers” of a 
molecule, starting with 
side structures.

Bemis, Guy W., and Murcko, Mark A., The properties of known drugs. 1. Molecular frameworks. (1996).

Levels: Repeating the process will yield smaller scaffolds that more dissimilar 
molecules will share.

Network construction: If molecules meet at a layer 3 scaffold or less, they 
are assigned a similarity score inversely proportional to the layer depth.



2M compounds
14M drug-target interactions
11k protein targets

Appendix C:
Drug-target proximity
Interaction: A drug interferes with the 
protein’s function, disrupting or altering its 
ordinary purpose.

Weighted proximity: Two drugs with a 
number of targets in common are assigned 
a link value by Zhou’s bipartite 
compression. This weighs proximity by the 
promiscuity (degree) of both nodes.

92M compounds, 2M tested.
230M drug-target interactions
10k protein targets, 20k gene targets

2k FDA-approved
>6k experimental
4k protein targets

Zhou, Tao et al, Solving the apparent diversity-accuracy dilemma of recommender systems. (2010).



Appendix D:
Consolidation attempts on old methods
Known libraries adjust values through 
statistical criteria. Rankings given by 
their methods produce erratic results 
upon normalizing.

Existing methods don’t conform to a 
“divide and conquer” cluster approach.



Appendix E:
Fitting consistency through different validations

Variance in parameters shows robustness. Results are replicable and minimally 
affected by random selection of datasets. Median CV: 1%.


