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Resilience of complex social systems to  
global challenges through behavioral data

COVID-19: PNAS 2022  
Nat. Human Behavior 2020 

Physical Activity: Nat. Comms 2021 
Healthy Food: MedRxiv 2022, 2021  

Impact of automation: PNAS 2019  
Universal resilience: Nat. Comms. 2021 

Behavioral segregation: Nat. Comms. 2021 
Online-offline segregation: EPJ Data 2020 

Effect of urban changes: arxiv 2022 
Impact of COVID-19: arxiv 2022

Identifying latent lifestyles: arxiv 2022 
Synthetic mobility data: ACM-ACM/SIGAPP 2022 
Street functional classification: EPJ Data Science 2022

Health-economy tradeoff: arXiv 2022 
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Resilience of complex social systems to  
global challenges through behavioral data

“Communities, where social capital is high and diverse, are healthier, wealthier, happier, and 
feel stronger bonds to their neighbors and their communities in general.”Institute for Social Capital, 2020

“Economic connectedness is the best predictor of social mobility”Chetty et al., Nature 2022

“Communities with more social capital are less affected and recover faster  
from natural disasters”Aldrich et al., 2014

Social networks shape our society/urban areas
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Urban 
Environment Behavior Social 

Connections
Societal 

outcomes

Inequality / Segregation 
Pandemics 
Disaster resilience 
Innovation 
Economic growth 
Health outcomes

“The city is not a tree”

Infrastructure 
Amenities 
Weather 
Pollution

Mobility 
Online/offline 
Lifestyles

Encounters 
Interactions 
Groups
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~5m-20m 
~10-25min

Mobile phone data to understand human behavior

GPS / LBS

CDR/XDR 
~100m-1km 

~30min

Bluetooth
~1m-10

Region / province

Indoor

Neighborhood 
Venue 



Inequality / 
segregation
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Income inequality is rising in our societies
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Social capital inequality

“Communities, where social capital is high and diverse, are healthier, wealthier, happier, and 
feel stronger bonds to their neighbors and their communities in general.” 

Institute for Social Capital, 2020 

“Economic connectedness is the best predictor of social (income) mobility” 
Chetty et al., Nature 2022

$

$$

$$$

$$$$

Economic segregation in social networks



The cost of economic isolation (segregation)
Cities with high segregation… 
Higher homicide rates 
Slower economic growth 
Less innovation over time 
Less resilient after natural disasters 

Areas highly segregated… 
Live 10/15 year less 
Fewer years of secondary education 
Small social (upper) mobility



75%
Around

of the people we encounter/interact live more than

 

15 km
away

Behavior

http://inequality.media.mit.edu


Average  

distance travelled  
by users to a given place is 

9.5 km
 

http://inequality.media.mit.edu/


If we are segregated  

where  

& 

 why  

is it happening? 

 

http://inequality.media.mit.edu


WHERE
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Moro, E., Calacci, D., Dong, X. & Pentland, A. Mobility patterns 
are associated with experienced income segregation in 
large US cities. Nature Communications 12, 4633 (2021). 

http://inequality.media.mit.edu
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Segregation happens at high spatial resolution

• Even across the street (~25m) we can find places with different segregation

Place segregation

302010
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Figure 2: Different places have different segregation a) Average place segregation by category

as a function of the average distance travelled by users to reach that place from their home. Colors

correspond to different groups of types of places and size is proportional to the number of places

in each category. As we can see the average segregation depends both on the type of place and

distance travelled. b) Spatial correlation of the segregation by place and user compared with the

one for census block group income. In the former cases, the correlation drops significantly at very

short distances, while income of census block groups are very correlated even at distances larger

than 1km (vertical dashed line). c) Summary of importance of each variables in the OLS model

for place segregation. Variables are colored according to their signed effect on the segregation and

variable importance is measure according to the method in?.
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Impact of a single place on inequality 

Prudential Center (Mall)
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Before 

-15%  
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How do you measure user inequality?

• Using the same metric, we can calculate user inequality 
(homophily in the contact network)

User A

40%
Inequality
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What explains social and place exploration?
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Figure 4: What explains place and social exploration? a) To explain social (�s), place (�p) ex-

ploration, and total segregation (S) for each individual we constructed a number of demographic

variables from its residence (at the level of census block group) demographics, variables about her

geographical mobility, and finally variables about the amount of time spent each each place cate-

gory. b) Shows the percentage of variance explained by different groups of variables (Residence,

Places or Mobility) in our data set for linear regression models used to explain place exploration

�p, social exploration �s and the total individual segregation S. b) Correlation between our de-

mographic residential variables and the social and place exploration. While social exploration is

highly correlated with variables like poverty ratio or percentage of white/black population in the

residence area, place exploration is not. d) Average time spent (in percentage from the mean of

each category) for different groups of users defined by their place exploration.
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Behavior

Residential

Choices (Venues visited)

Mobility patterns

Income / Poverty

 Region
Education

How much of our segregation depends on where we live?
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Other 18%
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Changes on inequality in areas with time

Segregation decreased in areas that attracted more educated people  
and more food business

Fan, Zhuangyuan, Tianyu Su, Maoran Sun, Ariel 
Noyman, Fan Zhang, Alex Sandy Pentland, and 

Esteban Moro. "Diversity beyond density: 
experienced social mixing of urban streets." arXiv 

preprint arXiv:2209.07041 (2022).
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The new (more segregated) normal
• After 2 years, levels of mobility have recovered to 2019 levels. 
• But profound changes in our behavior (work-from-home, less traveling, fewer 

food outings) have changed forever the social fabric of our cities. We are ~15% 
more segregated by income in our cities than before the pandemic. 

Figure 1. Diversity of urban encounters have decreased during COVID-19. A) Income diversity of encounters in places
in the Boston and Cambridge area decreased during the pandemic. Diversity gradually recovers with reopening, however, not
fully compared to pre-pandemic levels. B) Aggregate mobility metrics, such as the daily number of visits per individual, daily
amount of time spent at POIs, and number of visited unique POIs have returned back to pre-pandemic levels by late 2021. C)
Despite the recovery in mobility statistics, the diversity in encounters experienced at places and by individuals have decreased
by around 15% and 10%, respectively, even during late 2021. D) Income diversity decreased in all major POI categories both
on the short term (e.g., April 2020) and long term (e.g., October 2021) in all cities. Grocery stores consistently experienced the
least effects of the pandemic while Arts and Museums, Leisure, and Coffee places had the largest decrease.

Results
Using a large and longitudinal dataset of individual GPS location records in four major metropolitan areas in the US across
more than three years, we analyze how experienced income diversity in urban encounters have changed during different
periods of the COVID-19 pandemic. Specifically, we analyze the dynamics of income diversity at the level of individual
places (points-of-interest; POIs) and individuals in cities. We seek to identify behavioral adaptation patterns that are at the
cause of such long-term changes, and we further unravel the sociodemographic, economic, and behavioral characteristics that
explain the spatial heterogeneity in decreased diversity. Mobility data was provided by Spectus, who supplied anonymized and
high-resolution mobile location pings for X million devices across four U.S. census core-based statistical areas (CBSAs). Our
second data source is a collection of 1.1 million verified points-of-interest (POIs) across all CBSAs, obtained via the Foursquare
API (see Methods). Post-stratification techniques were implemented to ensure the representativeness of the data across regions
and income levels (see SI).

To analyze income diversity in the observed urban encounters, each individual user in the dataset was assigned a socio-
economic status (SES) proxy, estimated from their home location census block group (CBG). The approximate home area
of each individual user was estimated by Spectus at the granularity of CBGs using their most common location during the

2/9

Yabe, T. et al. Behavioral adaptation to the new normal worsened 
income diversity in urban encounters, arXiv (2022)
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Epidemics
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Contact matrices at high resolution
• Using the high-resolution mobility data and sociodemographic data from the 

Boston area we can construct the contact networks 

• We can estimate the probability that two agents are in contact (by day , by place 
, …)

t
α

wα
ij(t)

0.00

0.04

0.08

0.12

0.16

0 50 100 150 200 250 300+

Contacts

Fr
eq

ue
nc

y

Unmitigated

0.0

0.1

0.2

0 50 100 150 200 250 300+

Contacts

Fr
eq

ue
nc

y

Medium closure

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300+

Contacts

Fr
eq

ue
nc

y

Non−essential closure

Supplementary Figure 3: Degree distribution in the community layer under normal conditions, soft social
distancing measures and full non-essential closure.

using !Cij , which is based on the co-presence probability estimation. ⌘C can thus be calculated as

⌘C = 1/n
X

i2{1,...,n}

X

j|j 6=i^j2{1,...,n}

!Cij

= 2.5

By construction, the weights for the household layer were assigned as !Hij = 1/(h� 1), where h is the
number of household members, so that ⌘H = 1. Analogously, by construction, for schools we have ⌘S = 1.

It is important to note that ⌘C,H,S refer to the mean number of daily e↵ective contacts in the synthetic
(non-calibrated) network. Based on the analysis of contact survey data from 9 countries [3, 4, 5, 6, 7], the
estimated number of daily e↵ective contacts by social setting is 10.86 in community+workplace, 4.11 in
household, and 11.41 in school.

To calibrate the weights of intra-layer links (!̂l), we associate to each layer a single rescaling factor wl

such that the mean number of daily e↵ective contacts in that layer matches mean number of daily e↵ective
contacts in the corresponding social setting. Therefore, the calibrated mean number of daily e↵ective
contacts in the community+workplace layer ⌘̂C is

⌘̂C = 1/n
X

i2{1,...,n}

X

j|j 6=i^j2{1,...,n}

!Cij wC+W

= 1/n
X

i2{1,...,n}

X

j|j 6=i^j2{1,...,n}

!̂Cij

= 2.50⇥ 10.86/2.50

= 10.86

where wC+W = 10.86/2.5. Analogously for household and school layers we obtain wH = 4.11 and wS =
11.41.

3 SARS-CoV-2 transmission model

The values of all the disease parameters used for simulating the transmission dynamics are given in table 3.
Figure 4 shows the numerical distributions of these parameters as resulting from simulations of the model.

5



  

ModelAgent-based epidemic simulations



Modelling the impact of testing, contact tracing and household 
quarantine on second waves of COVID19 
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Aleta, A. et al. Modelling the impact of testing, contact tracing and 
household quarantine on second waves of COVID-19.  
Nat Hum Behav 4, 964–971 (2020).



Where, who, when transmission (and super-spreading) events 
happen 

Alberto Aleta, David Martín-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova,  
Matteo Chinazzi , Natalie E. Dean , M. Elizabeth Halloran , Ira M. Longini, Jr. , Stefano Merler,  
Alex Pentland, Alessandro Vespignani Yamir Moreno & Esteban Moro. PNAS 2022 
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Figure 3: Spatial spreading of the disease. The plots in the left column represent the share of

infections across layers in New York (a) and Seattle (d). In the middle column, the estimated

location where the infections took place for New York (b) and Seattle (e) in the community layer.

Note that the y-axis is 20 times smaller in Seattle. The evolution has been smoothed using a rolling

average of 7 days. In the right column, the distributions are normalized over the total number of

daily infections, showing how infections were shared across categories in the community layer.

The evolution has been smoothed using a rolling average of 7 days.
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Outlook
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Urban 
Environment

Mobility 
Behavior

Social 
Connections

Data quality and privacy-preserving methods
Synthetic data: using deep learning methods to 
low-embed large-scale mobility data. Debiasing 
mobility data using statistical and small survey 
datasets (NSF). https://arxiv.org/abs/2209.12095 
https://dl.acm.org/doi/abs/10.1145/3477314.3507230  

Epidemics
- Mobility data can be used to 
manage better social 
distancing policies, Nature 
Human Behavior 2020. 
- Human behavior is as 
important as physical locations 
in determining the pathways 
of transmission in epidemics. 
(PNAS 2022)

Mobile food environments 
70% of fast food is consumed > 10km away 
from home. Better interventions should 
consider behavioral rather than home 
deserts. https://doi.org/
10.1101/2022.09.20.22280128 

Public health
The second pandemic: social 
distancing changed physical 
activity behavior in our cities 
(Nature Communications 
2021)

Environmental-behavioral inequality
Some groups are more 
exposed to pollution event 
when they move away from 
home.

https://arxiv.org/abs/2209.12095
https://dl.acm.org/doi/abs/10.1145/3477314.3507230
https://doi.org/10.1101/2022.09.20.22280128
https://doi.org/10.1101/2022.09.20.22280128
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