Influence maximization in Boolean networks

Filippo Radicchi

https://cgi.luddy.indiana.edu/~filira

filiradi@indiana.edu

LUDDY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

T. Parmer, L.M. Rocha and F. Radicchi Nature Communications 13, 3457 (2022)

Supported by

Boolean networks

schemes.

- S. Kauffman, Nature 224,177–178 (1969).
- R. Albert, H.G. Othmer, J. Theor. Biol. 223, 1–18 (2003).

Boolean networks State-transition graph (STG)

fixed-point configuration transient configuration

Each configuration corresponds to a node in the STG; transitions between configurations are determined by the Boolean rules of the dynamics

If there are N nodes in the network, the STG is composed of

$$2^N$$
 nodes

Individual-based mean-field approximation (IBMFA)

$$s_i(t) = P(\sigma_i(t) = 1)$$

expectation value over an infinite number of realizations of the dynamics

 $P\left(\overrightarrow{\sigma}(t)|\overrightarrow{s}(t)\right) = \prod_{i=1}^{N} [s_i(t)]^{\sigma_i(t)} [1 - s_i(t)]^{1 - \sigma_i(t)}.$ state variables are assumed to be uncorrelated

Individual-based mean-field approximation (IBMFA)

started from random configurations $s_i(t=0) = P(\sigma_i(t=0) = 1) = 1/2$

accuracy of IBMFA is tested on numerical simulations

baseline error (dashed) is given by the standard deviation of numerically simulated trajectories

Boolean networks

We study the dynamics of a network under a peculiar choice of its initial configuration

seed set $\mathcal{X} = \{(i_1, \hat{\sigma}_{i_1}), \dots, (i_k, \hat{\sigma}_{i_k})\}$

The state of the nodes in the seed set is pinned, i.e., does not change in time

$$\sigma_i(t) = \hat{\sigma}_i \quad \text{if } i \in \mathcal{X}$$

The initial state of all nodes outside the seed set value is maximally uncertain, i.e.,

$$s_i(t=0) = P(\sigma_i(t=0) = 1) = 1/2 \quad \text{if } i \notin \mathcal{X}$$

subsequent values of the state variables are determined by the rules of the dynamics

Dynamical influence of seed sets

Influence maximization in Boolean networks unconstrained greedy optimization

 $\mathcal{X}_v = \{(b_1, \hat{\sigma}_{b_1}), \dots, (b_v, \hat{\sigma}_{b_v})\}$ optimal seed set at stage v

For v=0 $\mathcal{X}_0 = \emptyset$. Set v = 1 and iterate:

1. choose the best seed

$$(b_v, \hat{\sigma}_{b_v}) = \arg \min_{(i, \hat{\sigma}_i) \notin \mathcal{X}_{v-1}} H(\vec{s} | \mathcal{X}_{v-1} \cup (i, \hat{\sigma}_i))$$

2. the new set of seeds is

 $\mathcal{X}_v = \mathcal{X}_{v-1} \cup (b_v, \hat{\sigma}_{b_v})$

3. increase v to v + 1

The above algorithm $H(\vec{s}|\mathcal{X}_v) = 0$ meaning that the seed set is iterated until

the entropy function is computed in the long-term regime of the dynamics a greedy post-processing technique is applied to set of identified seeds

Influence maximization in Boolean networks

constrained greedy optimization towards the attractor

$$\Theta = \{(1, \tilde{\sigma}_1), \dots, (N, \tilde{\sigma}_N)\}$$

 $\mathcal{X}_v = \{(b_1, \hat{\sigma}_{b_1}), \dots, (b_v, \hat{\sigma}_{b_v})\}$

optimal seed set at stage v

For v=0 $\mathcal{X}_0 = \emptyset$. Set v = 1 and

1. choose the best seed

 $(b_v, \hat{\sigma}_{b_v}) = \arg \min_{\substack{(i, \hat{\sigma}_i) \notin \mathcal{X}_{v-1}, (i, \hat{\sigma}_i) \in \Theta}} H(\vec{s} | \mathcal{X}_{v-1} \cup (i, \hat{\sigma}_i))$ 2. the new set of seeds is

 $\mathcal{X}_v = \mathcal{X}_{v-1} \cup (b_v, \hat{\sigma}_{b_v})$

3. increase v to v + 1

The above algorithm is iterated until $H(\vec{s}|\mathcal{X}_v) = 0$ meaning that the seed set leads to a fixed point the entropy function is computed in the long-term regime of the dynamics a greedy post-processing technique is applied to set of identified seeds

Influence maximization in Boolean networks known attractors

Influence maximization in Boolean networks regular random Boolean networks

Influence maximization in Boolean networks Real Boolean networks from the Cell Collective repository

Influence maximization in Boolean networks Real Boolean networks from the Cell Collective repository

Influence maximization in Boolean networks Real Boolean networks from the Cell Collective repository

Borriello, E. & Daniels, B. C. Nat. Commun. 12, 1–15 (2021).

Computational time

T. Parmer, L.M. Rocha and F. Radicchi Nature Communications 13, 3457 (2022)

Supported by

