Modelling how social network algorithms can influence opinion polarization

Guilherme F. de Arruda
CENTAI Institute, Turin, Italy

Collaborators: Henrique F. de Arruda, Felipe M. Cardoso, Alexis R. Hernández, Luciano da F. Costa, and Yamir Moreno

Introduction

- Many opinion models have been proposed based on different aspects of the interaction between people;
- Objective: propose a model to incorporate the information on the relationship between social network users and the social network;
- Our model simulates how the information from outside of the social network influences the opinions.

Motivation

Twitter networks: examples of polarization in the United States

Model: Post transmission

Transmission probability:

We tested four different user behaviors.

Model: Post reception

Reception probability:

$$
\begin{aligned}
& y=\left|b_{i}-b_{j}\right| \\
& y_{1}=|-0.9-0.2|=1.1 \quad P_{d}^{I I}\left(y_{1}\right)=0.42 \\
& y_{2}=|-0.9-1.0|=1.9 \quad P_{d}^{I I}\left(y_{2}\right)=0.01 \\
& y_{3}=|-0.9-(-0.3)|=0.6 \quad P_{d}^{I I}\left(y_{3}\right)=0.79 \\
& y_{4}=|-0.9-(-0.9)|=0.0 \quad P_{d}^{I I}\left(y_{4}\right)=1.00
\end{aligned}
$$

This step simulates the social network algorithm.
We tested several possibilities of algorithms.

Model: Atraction

People update their opinions on topics after interacting or in a discussion and can become more polarized doing so.
D.J. Isenberg, Group polarization. A critical review and meta-analysis, Journal of Personality and Social Psychology 50 (1986) 1141-1151.
S. Moscovici, M. Zavalloni, The group as a polarizer of attitudes, Journal of Personality and Social Psychology 12 (1969) 125-135.

Model: Rewiring

Twitter users are less likely to unfollow friends who have acknowledged them.

Model

(a)

(b)

(c)

Reception probability

	$\begin{gathered} \phi=0 \\ b_{i}=-0.9 \end{gathered}$
$y=\left\|b_{i}-b_{j}\right\|$	
$y_{1}=\|-0.9-0.2\|=1.1$	$P_{d}^{I I}\left(y_{l}\right)=0.42$
$y_{2}=\|-0.9-1.0\|=1.9$	$P_{d}^{I I}\left(y_{2}\right)=0.01$
$y_{3}=\|-0.9-(-0.3)\|=0.6$	$P_{d}^{I I}\left(y_{3}\right)=0.79$
$y_{4}=\|-0.9-(-0.9)\|=0.0$	$P_{d}^{I I}\left(y_{4}\right)=1.00$

(e)

Attraction probability
$\xi\left(\theta, b_{j}\right)=1-\left|\theta-b_{j}\right| / 2$
$\xi_{1}(-0.4,0.2)=0.7$
$\xi_{3}(-0.4,-0.3)=0.95$
$\xi_{4}(-0.4,-0.9)=0.75$

$$
\Delta=0.1
$$

$$
\begin{array}{ll}
y_{1}=|-0.9-0.3|=1.2 & P_{\text {rewire }}\left(y_{1}\right)=0.1 \\
y_{4}=|-0.9-(-1.0)|=0.1 & P_{\text {rewire }}\left(y_{4}\right)=0.0
\end{array}
$$

(h)
(i)

Results analyses

Bimodality coefficient

(a) Consensus

(b) Echo chamber,

(c) Diverse

$$
B C=\frac{g^{2}+1}{k+\frac{3(n-1)^{2}}{(n-2)(n-3)}}
$$

where n is the number of samples, and g and k are the skewness and kurtosis of the analyzed distribution, respectively.

A $B_{\text {critic }}=5 / 9$ was empirically found . For values higher and lower than
$B C_{\text {critic }}$, it tends to be bi-modal and unimodal, respectively.

[^0]Results: Analysis of the dynamics

Temporal analysis

- Example of dynamics without rewiring;
- In this case, the dynamics goes from bimodal to unimodal, with consensus close to an extreme opinion.

Main conclusions

- This model was found to be flexible and can give rise to a wide range of outcomes representing different scenarios;
- In some cases, there is the polarization of opinions but without the formation of echo chambers (mainly when rewiring is not considered);
- If the users do not care about the information they post, the algorithm (post reception) can lead to polarization and the formation of echo chambers.

For more information

Our paper is published in:
de Arruda, H. F., Cardoso, F. M., de Arruda, G. F., Hernández, A. R., Costa, L. da F., \& Moreno, Y. (2022). Modelling how social network algorithms can influence opinion polarization. Information Sciences, 588, 265-278.

The source code can be found in: https://github.com/hfarruda/OpinionPolarization

SCAN ME

Thank you!

CENTAI

[^0]: W. Cota, S.C. Ferreira, R. Pastor-Satorras, M. Starnini, Quantifying echo chamber effects in information spreading over political communication networks, EPJ Data Science 8 (2019) 35.
 R. Pfister, K.A. Schwarz, M. Janczyk, R. Dale, J. Freeman, Good things peak in pairs: a note on the bimodality coefficient, Frontiers in Psychology 4 (2013) 700.

