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PHASE TRANSITION:

O MT model has infinitely many absorbing states

O The critical point is defined as the parameter that separates two scaling regimes:

o The final number of stiflers does not scale with the system size (zero in the thermodynamic limit);

o The number of stiflers scales with the system size.
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Fig. 2 Phase diagram for the standard MT model. Results for @ =1 and Fig. 3 Time to reach the absorbing state for the standard MT model.
different sizes on a random regular networks with (k), =10. Results for a =1 and different sizes on random regular networks with
(k) =10. The dashed line follows 7;-2~".
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Fig. 4 Comparison between analytical and Monte Carlo critical point

estimations (A.). Results for random regular networks with (k), =10 and
§="1and N =108, The continuous line expresses the value of 4. obtained as
a solution of q(1) =1, from Eq. (5). In contrast, the dashed line represents
the naive approximation that accounts only for the probability that the next

event is spreading or stifling. In the inset we present the comparison for the
low a regime.



Power-law behavior: P(k) ~ k™7

O 2.0 <y <3.0: vanishing;

O 7y > 3.0: non-null;

O Robust for a range of a.
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Fig. 5 Critical point estimations of uncorrelated power-law networks.
We plot A as a function of N and for different values of y and a, considering
s§=1
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Fig. 6 Lifespan as a function of the spreading rate A. Results for =1,
a=0.5 on an uncorrelated power-law network with P(k) ~ k=7 with
y=2.25, N=108. In the main panel, we show a wide range of 2,
emphasizing the sub-critical behavior, while in the inset we show the peak
that suggests a continuous phase transition. The blue curve (dot dashed
line) follows 7;~ 2~ and the orange curve (dashed line) follows z;~1~088,
obtained from a fitting of the lifespan obtained using Monte Carlo
simulations (the gray curve).
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Fig. 7 Temporal behavior of the density of spreaders for an uncorrelated
power-law network. Result for a network with N= 106, y=225 a=05
and 6 =1 in the regime 1< § for values of 1 near the critical point

A~ 0.015.
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Fig. 6 Lifespan as a function of the spreading rate A. Results for =1,

a=0.5 on an uncorrelated power-law network with P(k) ~ k=7 with

y=2.25, N=108. In the main panel, we show a wide range of 2, (0( + 6)6 a
L. ™ . . . x _ -1

emphasizing the sub-critical behavior, while in the inset we show the peak = ( 2 + X )

that suggests a continuous phase transition. The blue curve (dot dashed <k>ka < )k(a + 6)

line) follows z;~2~" and the orange curve (dashed line) follows 7;- 2-0-88,

obtained from a fitting of the lifespan obtained using Monte Carlo

simulations (the gray curve).
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ASYMPTOTIC ANALYSIS

k =n + ¢+ min(c, k) and k = m + ¢, establishing
three different possible regimes:

O 0<c<k, wherec=m-nand k =2m —n;
@ _
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O ¢ =k,wherem =0and n = —k;
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O 0<k<c,wherec=-nand k =m —n.
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