Analytic solution for the spectral density and
localization properties of complex networks

Jeferson Dias da Silva and Fernando Lucas Metz

Universidade Federal do Rio Grande do Sul

uv%"es @CNPq

UNIVERSIDADE FEDERAL ‘Conselho Nacional de Desenvolvimento
DO RIO GRANDE DO SUL Cientifico e Tecnoldgico



Introduction

» The leading eigenpair of the adjacency random matrix
governs:
» spreading of diseases;
» synchronization transition;
» stability of complex systems.



Introduction

» The leading eigenpair of the adjacency random matrix
governs:
» spreading of diseases;
» synchronization transition;
» stability of complex systems.
» Analytical solutions only for the homogeneous case;

> regular random graphs;
> high-connectivity limit.



Introduction

» The leading eigenpair of the adjacency random matrix
governs:
» spreading of diseases;
» synchronization transition;
» stability of complex systems.
» Analytical solutions only for the homogeneous case;
» regular random graphs;
> high-connectivity limit.
» How do we extract analytic information from heterogeneous
random networks?



Introduction

» The leading eigenpair of the adjacency random matrix
governs:

» spreading of diseases;
» synchronization transition;
> stability of complex systems.
» Analytical solutions only for the homogeneous case;
> regular random graphs;
> high-connectivity limit.
» How do we extract analytic information from heterogeneous
random networks?

» Study the spectral and localization properties of heterogeneous
random networks in the high connectivity limit.
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The problem setup |

» Simple and undirected random graph with N nodes and
average degree c;

» Network topology specified by the weighted adjacency random
matrix A with entries given by A;; = ¢ Jjj;

» c; = 1if i and j are connected and c;; = 0 otherwise;

» J;j i.i.d random variable distributed as p; with mean zero and
standard deviation J;/4/c;

> A is generated according to the configuration model of
networks.
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Eigenvalue-dependent IPR
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Resolvent matrix
G(z)=(lz— AL, z=X—e

Spectral density

pe(A) == lim —ZImG,,

T N—oo N

LDOS
pi = —ImG;j(2)
IPR
Z.(\) = m—p Jim NZ|G,,



Cavity method

()

Figure: Locally tree-like structure.
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Cavity equations
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The symbol J; denotes the set of nodes adjacent to /.
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Equations for the observables

Average resolvent on the cavity
graph
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z=0= (G) = 4 for any v(k).



Negative binomial degree distribution

» Results for random graphs with a negative binomial degree
distribution
» The pdf of the re-scaled degrees stands as

« a—le—om

vp(K) = MT

» For ¢ — oo, the relative variance of p,gb) reads
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The spectral density

P> « controls the heterogeneity
» o — 0o = homogeneous network

» « — 0 strongly heterogeneous network

K- (7)o G500 1)
pe(A) = ilm[@m}



The spectral density
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The spectral density for [A\] — 0
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The IPR
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For e — 0t

» pc(\) converges to a finite value;
» Z.(\) vanishes as Z,(\) ~ ¢;

» The same behavior holds for other values of «.



The distribution of the LDOS
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» Negative binomial degree distribution:

» Heterogeneity controlled by a single parameter «;
Singularity on the spectral density for a < 1;

For A # 0, IPR vanishes proportional to ¢;

For A =0, Po(y) regular shape with a power-law tail;

>
| 2
| 2
» Extended eigenvectors in the entire spectrum.
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