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Introduction

▶ The leading eigenpair of the adjacency random matrix
governs:
▶ spreading of diseases;
▶ synchronization transition;
▶ stability of complex systems.

▶ Analytical solutions only for the homogeneous case;
▶ regular random graphs;
▶ high-connectivity limit.

▶ How do we extract analytic information from heterogeneous
random networks?

▶ Study the spectral and localization properties of heterogeneous
random networks in the high connectivity limit.
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The problem setup I

▶ Simple and undirected random graph with N nodes and
average degree c ;

▶ Network topology specified by the weighted adjacency random
matrix A with entries given by Aij = cijJij ;

▶ cij = 1 if i and j are connected and cij = 0 otherwise;

▶ Jij i.i.d random variable distributed as pJ with mean zero and
standard deviation J1/

√
c ;

▶ A is generated according to the configuration model of
networks.
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The main equations I

Spectral density

ρ(λ) = lim
N→∞

1

N

N∑
µ=1

δ(λ− λµ)

LDOS

ρi (λ) =
N∑

µ=1

|vµ,i |2δ(λ− λµ)

IPR

Yµ =
N∑
i=1

(vµ,i )
4

Eigenvalue-dependent IPR

I(λ) = lim
N→∞

∑N
µ=1 δ(λ− λµ)Yµ∑N
µ=1 δ(λ− λµ)
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The main equations II

Resolvent matrix

G (z) = (I z −A)−1, z = λ− iϵ

Spectral density

ρϵ(λ) =
1

π
lim

N→∞

1

N

N∑
i=1

ImGii (z)

LDOS

ρi =
1

π
ImGii (z)

IPR

Iϵ(λ) =
ϵ

πρϵ(λ)
lim

N→∞

1

N

N∑
i=1

|Gii (z)|2
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Cavity method
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Figure: Locally tree-like structure.



The high connectivity limit

Cavity equations

Gii (z) =
1

z −∑
j∈∂i J

2
ijG

(i)
jj (z)

(i = 1, . . . ,N)

The symbol ∂i denotes the set of nodes adjacent to i .

G
(i)
jj (z) =

1

z −∑
ℓ∈∂j\i J

2
jℓG

(j)
ℓℓ (z)

i ∈ ∂j

Law of large numbers
(1 ≪ c ≪ N)∑

j∈∂i

J2ijG
(i)
jj (z)

c→∞−→ ki
c
J21 ⟨G ⟩

pdf of the re-scaled degrees

ν(κ) = lim
c→∞

∞∑
k=0

pkδ
(
κ− k

c

)
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Equations for the observables

Average resolvent on the cavity
graph

⟨G ⟩ =
∫ ∞

0

dκ ν(κ)κ

z − κJ21 ⟨G ⟩

Spectral density

ρϵ(λ) =
1

π
Im

[∫ ∞

0

dκ ν(κ)

z − κJ21 ⟨G ⟩

]

Inverse participation ratio

Iϵ(λ) =
ϵ

πρϵ(λ)

∫ ∞

0

dκ ν(κ)

|z − κJ21 ⟨G ⟩|2

pdf of the LDOS at z = 0

P0(y) =
1

J1y2
ν

(
1

J1y

)
, yi = ImGii

z = 0 =⇒ ⟨G ⟩ = i
J1

for any ν(κ).
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Negative binomial degree distribution

▶ Results for random graphs with a negative binomial degree
distribution

▶ The pdf of the re-scaled degrees stands as

νb(κ) =
αακα−1e−ακ

Γ(α)

▶ For c → ∞, the relative variance of p
(b)
k reads

lim
c→∞

σ2
b

c2
=

1

α



The spectral density

▶ α controls the heterogeneity

▶ α → ∞ =⇒ homogeneous network

▶ α → 0 strongly heterogeneous network

J21 ⟨G ⟩2 =
( −αz

J21 ⟨G ⟩

)α

exp
( −αz

J21 ⟨G ⟩
)
Γ
(
1− α,

−αz

J21 ⟨G ⟩
)
− 1

ρϵ(λ) =
1

π
Im

[
J21 ⟨G ⟩2 + 1

z

]



The spectral density
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The spectral density for |λ| → 0
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The IPR
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For ϵ → 0+

▶ ρϵ(λ) converges to a finite value;

▶ Iϵ(λ) vanishes as Iϵ(λ) ∼ ϵ;

▶ The same behavior holds for other values of α.



The distribution of the LDOS
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Conclusion

▶ Spectral properties of heterogeneous random networks with
finite c do not have analytical form;

▶ c → ∞, analytical solutions for the adjacency matrix
observables of heterogeneous networks;

▶ Negative binomial degree distribution:
▶ Heterogeneity controlled by a single parameter α;
▶ Singularity on the spectral density for α ≤ 1;
▶ For λ ̸= 0, IPR vanishes proportional to ϵ;
▶ For λ = 0, P0(y) regular shape with a power-law tail;
▶ Extended eigenvectors in the entire spectrum.
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Thank you!


