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Preliminaries: Evolutionary game theory

What is a game?

A set of N players;
A set S of m pure strategies;

Rock, paper and scissors:
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Motivation

Different games with paired interactions and multiple
interactions were studied.

Many situations cannot be reduced to pair interactions.
We propose to study the case where in each round:

With probability p: 2 agents play.
With probability 1-p: 3 agents play.
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Duel (2 players)

Duel matrix:

s1 s2
s1 (1/2, 1/2) (3/4, 1/4)
s2 (1/4, 3/4) (1/2, 1/2).

s1 is playing the perfect
strategy:
Proba of killing = 1
s2 is playing the mediocre
strategy:
Proba of killing = 0.5

(The perfect strategy is
preferred)
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Truel (3 players)
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The replicator dynamics

σ proportion that plays the strategy s1 (perfect).
P1 expected payoff of the strategy 1.
(σP1 + (1 − σ)P2) is the average expected payoff of the
population.

The evolution of the proportion of agents that play the perfect
strategy is given following ordinary differential equation:

d
dtσ(t) = σ

{
P1 − (σP1 + (1 − σ)P2)

}
,

which is known as the replicator equation.
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Nash equilibrium and stability

Nash Equilibria (NE): It is not convenient for any player -
unilaterally - to change what they are playing.

Every Nash equilibria is a rest point of the replicator system.

A NE that is stable in time is called an Evolutionary Stable
Strategy (ESS)
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Duel-Truel

Replicator equation:

d
dtσ(t) = σ

{
P1 − (σP1 + (1 − σ)P2)

}
,

σ proportion that plays the strategy s1 (perfect)

dσ
dt = σ(1 − σ)

[
p
4 − (1 − p)

(
1

24 +
1
8σ

)]
, (1)

where p is the probability of playing Duel.

Interior fixed point:

σ∗ =
7p− 1

3(1 − p) . (2)
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Duel-Truel

Nash equilibria with respect to p :

σNE =


0 if p ≤ 1

7 ,

σ∗ if 1
7 < p < 2

5 ,

1 if 2
5 ≤ p.

The pure Nash equilibria are ESS.
The mixed Nash Equilibria are ESS for 1

7 < p < 2
5 .
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The dynamics over a complex network

In a single time step ∆t = 1/N:
Agent i is choosen at random.
State θi = 2 (perfect) or θi = 1 (mediocre)

With proba p (duel):
One neighboring agent j is
randomly choosen.

θi → θj with proba Pθj

With proba 1 − p (truel):
Two neighboring agents j and k
are randomly choosen.

θi → θj with proba
P̃θj
2

θi → θk with proba
P̃θk
2
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Agent dynamics

Expected payoffs of agent i are given by:

Pi1 =
3
4 − 1

4σi si θi = 1

Pi2 =
1
2 − 1

4σi si θi = 2,

when i plays duel, and by:

P̃i1 =
1
3σ

2
i +

1
2σi(1 − σi) +

7
24(1 − σi)

2 si θi = 1,

P̃i2 =
1
2σ

2
i +

17
24σi(1 − σi) +

1
3(1 − σi)

2 si θi = 2,

when i plays truel.
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Mean field

The evolution in time of σ is given by:

dσ
dt =

[
p(P2 − P1) + (1 − p)(P̃2 − P̃1)

]
σ(1 − σ), (3)

Coincides with:

dσ
dt =

[
1
4p−

(
1

24 +
σ

8

)
(1 − p)

]
σ(1 − σ) (4)
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Results

The interval of p coexistence occurs depends on the mean
degree of the network µ.
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Results

The coexistence region depends on p and increases with µ.
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Conclusions

We found games that have mixed equilibria that are ESS.

We introduced the replicator dynamics over complex
networks.

We found that the interval of p for which there is coexistence
depends on the mean degree of the network.

Starting at the pure equilibria fase for a given p, stable
coexistence may be induced by inceasing the amount of
neighbors.
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¡Thank you for your attention!
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