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what should be the modular structure of a
dynamic brain network of a conscious person?



The dynamic core hypothesis

Conscious experience <-> Neural processes in the human brain

*Edelman, Gerald M and Tononi, Giulio. Reentry and the dynamic core: neural correlates of conscious experience. Press Cambridge, Neural correlates of
consciousness: Empirical and conceptual questions, 139 (2000).
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The dynamic core hypothesis

Conscious experience <-> Neural processes in the human brain

“Consciousness is correlated with simultaneously integrated and differentiated
assemblies of transiently synchronized brain regions.”

Dynamic core -> Large number of possible configurations.

|

Constrained to represent highly integrated brain states

The dynamic core consists of a sequence exploring an ample
repertoire of highly integrated brain states.

*Edelman, Gerald M and Tononi, Giulio. Reentry and the dynamic core: neural correlates of conscious experience. Press Cambridge, Neural correlates of
consciousness: Empirical and conceptual questions, 139 (2000).
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Despite previous research, the relationship between
consciousness and the modular structure of
multilayer brain networks remains to be investigated.



what did we do?

1. We constructed multilayer connectivity networks from fMRI recordings acquired
during states of reduced consciousness: under propofol anesthesia and deep sleep.

* For more details see hftps://doi.org/10.1063/5.0046047
** P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community structure in time-dependent, multiscale, and multiplex networks, science 328, 876
(2010).
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I. Propofol-induced loss of consciousness: 18 volunteers were scanned
with fMRI during wakefulness (W), propofol sedation (S),

] propofol-induced loss of consciousness (LOC).
Sequence of brain states:

\ II.  Human NREM sleep: fMRI data from 63 subjects acquired during
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Time-dependent algorithm **
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* For more details see hftps://doi.org/10.1063/5.0046047
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Free parameters

w -> Connectivity strength between temporal layers
¥ -> Characteristic size of the detected modules

* For more details see hftps://doi.org/10.1063/5.0046047
** P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community structure in time-dependent, multiscale, and multiplex networks, science 328, 876
(2010).
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what did we do?

Ys,

ﬁ' To find the optimal parameters of this algorithm:

K HO) Y
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Szwk Y« detection in heterogeneous temporal networks.
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Free parameters

w -> Connectivity strength between temporal layers
¥ -> Characteristic size of the detected modules

* For more details see hftps://doi.org/10.1063/5.0046047
** P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community structure in time-dependent, multiscale, and multiplex networks, science 328, 876
(2010).
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Benchmark for time-dependent module detection

<k> =20

e Static benchmark * :

o Scale-free degree distributions
o Scale-free module size distributions.

* A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical review E 78, 046110 (2008).

** C. Granell, R. K. Darst, A. Arenas, S. Fortunato, and S. G omez, Benchmark model to assess community structure in evolving networks, Physical Review E 92, 012805
(2015).

*** For more details about the benchmark see https://doi.org/10.1063/5.0046047.
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Benchmark for time-dependent module deTechon

e Static benchmar
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Results

We obtained the time-dependent modular structure
of fMRI functional connectivity networks

20 40 60 80 100 120
Time Time

We focused on two metrics related to the dynamics of communities :
- Largest multilayer module (LMM) -identified with dynamic core-

max; |G|
NT

- Flexibility, which we interpreted as the degree of differentiation of the

dynamic core.
— |{t : M’it # Mit+1}| (rate of alternation)
T

(fraction of nodes in biggest module)

LMM =
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Results Flexibility (LMM) during Wake
vs. sleep stages
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vs. sleep stages

Results

Majority of nodes decreased their flexibility during
sleep -> In regions related to sensory perception. In
particular, flexibility decreases during N1 sleep were
observed mostly for thalamic nodes, consistent with
the observation that the thalamus becomes
deactivated and disconnected from sensory cortices
during early sleep.

Wake > N3
Wake < N3

Conversely, flexibility increased during sleep only in
frontal regions associated with higher cognitive

functions, with the strongest increases seen during N3 wake > ,
S|eep B Decreased flexibility during sleep

. Increased flexibility during sleep
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Results

A W > N3 sleep W>LOC

A: Significant differences in the regional probability of SRE S, PR

belonging to the largest multilayer module (LMM) )
for wakefulness vs. N3 sleep (left) and vs. LOC.
While changes were more widespread and R

significant during N3 sleep, LOC was also
associated with decreases in sensorimotor regions,
and increases in frontal regions
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A: Significant differences in the regional probability of
belonging to the largest multilayer module (LMM)
for wakefulness vs. N3 sleep (left) and vs. LOC.

While changes were more widespread and
significant during N3 sleep, LOC was also
associated with decreases in sensorimotor regions,
and increases in frontal regions

B
B: A Scatter plot of the change in the probability of 0.5
belonging to the LMM for N3 vs. LOC, it shows a similar -
spatial pattern of changes. !
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Results

A W > N3 sleep W>LOC
A: Significant differences in the regional probability of i SRRERE
belonging to the largest multilayer module (LMM)

for wakefulness vs. N3 sleep (left) and vs. LOC.

L

While changes were more widespread and
significant during N3 sleep, LOC was also
associated with decreases in sensorimotor regions,
and increases in frontal regions

w
o

B: A Scatter plot of the change in the probability of 0.5 0.5
belonging to the LMM for N3 vs. LOC, it shows a similar ; 0'4 = %
spatial pattern of changes. ! 0'3 -
C: Boxplots for the normalized size of the largest _G;J 2 N3 W
multilayer module. In both cases (N3 sleep and LOC), o

. . : = 0.5
the LMM decreased in size during loss of .. 04 %
consciousness. 0.5 ‘ ' %

-0.2 0 0.2 0.4 0.3 p=0.008

Wake - N3 sleep LOC W
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Conclusions
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- Size of LMM was reduced during deep sleep and general anesthesia -> Supports the hypothesis

that consciousness can vanish as a consequence of fragmented dynamic core.

- The regional correlation of the changes in the probability of belonging to the LLM during
deep sleep and anesthesia suggests that this metric could capture a signature of loss of
consciousness present in both conditions.

- Flexibility decreased during sleep: Majority of the regions decreased their rate of alternation

between the LMM and the rest of the modules, paralleling the consolidation of deeper sleep

stages.
Future studies should assess whole-brain dynamics simultaneously with different methods to
understand whether the dynamic core fluctuates over scales inaccessible to fMRI, and

whether these fluctuations are manifest at the behavioral and cognitive levels.
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fMRI time series and communities

A

Louvain

=

Regions of interest
Regions of interest

Time

Figure S1. A) Example functional connectivity matrix before (left) and after (right) thresholding. The right
panel shows the modular structure of the network, obtained using the Louvain algorithm. B) Example time
series associated with different functional modules. Grey lines represent time series from each individual ROI
in the module and colored lines indicate the mean time series. The anatomical distributions of the modules are
shown on the right.



Time-dependent benchmark algorithm

Null model based on division of communities: Division

We start from a network with N nodes and apply the following steps:
1. A module named C, sufficiently large for the division into smaller sub-modules, is chosen at random.

2. The nodes belonging to C are assigned to two sub-modules, C1 and C2. A fraction z of the nodes in C belongs to C1, and
(1 — z) belongs to C2.

3. For each node i in C2, we apply the following steps:

(a) mo1; of node i is calculated as:

. _ #Links with C1 nodes
H21i = #Total links

(b) A mixing parameter between communities is chosen per node, pis.

(c) While po1; > p1o nodes a, b and ¢ are searched such that they meet the conditions set forth in the division step
presented in the rewiring scheme: node a and node b belong to C1 and are connected to node i, node c belongs to C2
and is not connected to node i.

(d) The link between node i and node b is deleted and a new link is created connecting it to node a. This is repeated until
there are no more nodes a, b and ¢ meeting these conditions or until po1; < p12. The rewiring scheme is presented in
the rewiring scheme.

(e) The final adjacency sub-matrix is saved as the dynamic network at time t = 1.

Division

Rewiring f

¢ mp

o) f o

The combination of these
two processes allowed us
to represent the most
frequent behaviours seen
in the dynamics of brain
real modular systems ***



Time-dependent benchmark algorithm

Null model based on expansion-contraction of communities: Contraction

It is an algorithm that selects two random modules from a certain complex network with N nodes, and then grows the size
of one module at the expense of the other. The steps are as follows:

1
2.

Two modules C1 and C2 are chosen at random.

The adjacency matrix is reordered so that the two modules appear consecutively. The adjacency sub-matrix containing
modules C1 and C2 is selected.

. C1 nodes are re-tagged and rewired, changing their membership to C2: Let n; be the number of C1 nodes, ranging from

1 to the X — th node of C1, where X is the integer part of njz. The following steps are applied to each node 7 of this set:

(a) p12; of node i is calculated as,
. __ #Links with C2 nodes
Hi2i = #Total links

b) A mixing parameter between modules is chosen per node, p12
c) While p12; > pi2, nodes a, b, ¢ and d are searched such that they meet the conditions set forth in the rewiring scheme.

(

(

(d) The link from node i to node b is deleted, and a new link is created between node i and node a. This is repeated until
there are no more nodes a and b fulfilling these conditions, or until p12; < p12.

(e) Node i is removed from C1 and added to C2.
(f) The average degree of intercommunity links of C2 nodes (< k;c2 >) and the degree of node i (k;) are calculated.
(

g) While k; < < kic2 > pairs of nodes whose C2 intramodular degrees are between < k;co > and k., are selected.
The links between those nodes are deleted, and new links between node i and other nodes in C2 with k < < k;co >
are added.

(h) The final adjacency sub-matrix is saved as the dynamic network at time ¢ = 4.

Contraction

0 i Rew.,.ng /0
T O



Time-dependent benchmark algorithm

0.3+

« (t) (standard deviation)
o o
o © o o9
L'n - (4] nN

(=}

Division

50 100
Iterations

- Division =Contraction

Contraction

50 100
Iterations

150 0

Wy

o

20

40 60
Network number

80

100

150

The coefficient of the power law
for the degree distribution, a(t),
and the standard deviation of for
both dynamics vs time.



Louvain method for community detection
Implemented in MATLAB

We consider a multilayer network with adjacency matrix given
by Aj;, where i and j index the network node and s indexes the layer,
which is here interpreted as a temporal dimension. Given a certain
partition, its multilayer modularity (Q) is computed as

1 kisk's
Q=— Z |:(Aij5 - Vsﬁfssr) ¥ 8ljwj5ri| 8(gis>gjr))

2'“ ijrs 3

where ki, = Y, Ao 0 = 3 > (ki + 3-  wjre), and mg = 3 kjs and
8(gis» gir) equals 1 if node i of layer s belongs to the same module as
node j of layer r. y; is the resolution parameter for layer s, and wjy;
represents the interlayer connectivity of node j between layers r and
s. Here, we consider the same y; for all layers and w;,; # 0 only if r
and s are consecutive layers; furthermore, all non-zero entries of wj,
are equal.

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain



Reqgional probability of belonging to the thalamic module

Regional probability of belonging to the thalamic module

We computed the regional probability of belonging to the same module as the bilateral thalamus ROI:

# {t :M (£) = C(8) }
Pi = -

Here Pl_ 1s the probability of finding the i-th region in the same module as the thalamus, M l_(t)is the

module assignment of region i at time ¢, C(t)1s the module assignment of the thalamic regions at time
t, and T1s the total time 1s the number of time points considered for the analysis (in our case, 120).



