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Brain regions

Transient
synchronization
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What should be the modular structure of a 
dynamic brain network of a conscious person?
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The dynamic core hypothesis
Conscious experience <->  Neural processes in the human brain

*Edelman, Gerald M and Tononi, Giulio. Reentry and the dynamic core: neural correlates of conscious experience. Press Cambridge, Neural correlates of 
consciousness: Empirical and conceptual questions, 139 (2000). 
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The dynamic core hypothesis
Conscious experience <->  Neural processes in the human brain

“Consciousness is correlated with simultaneously integrated and differentiated 
assemblies of transiently synchronized brain regions.”

Dynamic core -> Large number of possible configurations.

*Edelman, Gerald M and Tononi, Giulio. Reentry and the dynamic core: neural correlates of conscious experience. Press Cambridge, Neural correlates of 
consciousness: Empirical and conceptual questions, 139 (2000). 

Constrained to represent highly integrated brain states

The dynamic core consists of a sequence exploring an ample 
repertoire of highly integrated brain states. 
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The dynamic core hypothesis
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The dynamic core hypothesis

 Differentiated but      integrated (segregated) states.
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The dynamic core hypothesis

 Differentiated but      integrated (segregated) states.

 Differentiated but       integrated states.

Different configuration      integrated dynamic core.
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The dynamic core hypothesis
Sequence of brain states

Multilayer network
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The dynamic core hypothesis
Sequence of brain states

Multilayer network

DYNAMIC CORE

Time-dependent
community.
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Despite previous research, the relationship between 
consciousness and the modular structure of 
multilayer brain networks remains to be investigated.
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What did we do?

* For more details see https://doi.org/10.1063/5.0046047 
** P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community structure in time-dependent, multiscale, and multiplex networks, science 328, 876 
(2010).

1. We constructed multilayer connectivity networks from fMRI recordings acquired 
during states of reduced consciousness: under propofol anesthesia and deep sleep.

https://doi.org/10.1063/5.0046047
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1. We constructed multilayer connectivity networks from fMRI recordings acquired 
during states of reduced consciousness: under propofol anesthesia and deep sleep.

I. Propofol-induced loss of consciousness: 18 volunteers were scanned 
with fMRI during wakefulness (W), propofol sedation (S), 
propofol-induced loss of consciousness (LOC).

II. Human NREM sleep:  fMRI data from 63 subjects acquired during 
wakefulness (W), 27 during N1 sleep, 33 during N2 sleep and 17 during 
N3 sleep* .

{Sequence of brain states: 

Multilayer network

DYNAMIC CORE

Time-dependent
community.

Time-dependent community detection  Using the multilayer Louvain 
algorithm **

https://doi.org/10.1063/5.0046047
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What did we do?

* For more details see https://doi.org/10.1063/5.0046047 
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Free parameters

ω -> Connectivity strength between temporal layers
૪ -> Characteristic size of the detected modules
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What did we do?

* For more details see https://doi.org/10.1063/5.0046047 
** P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community structure in time-dependent, multiscale, and multiplex networks, science 328, 876 
(2010).

Free parameters

ω -> Connectivity strength between temporal layers
૪ -> Characteristic size of the detected modules

To find the optimal parameters of this algorithm:

We developed a benchmark for module 
detection in heterogeneous temporal networks.

https://doi.org/10.1063/5.0046047


Benchmark for time-dependent module detection

* A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical review E 78, 046110 (2008).
** C. Granell, R. K. Darst, A. Arenas, S. Fortunato, and S. G omez, Benchmark model to assess community structure in evolving networks, Physical Review E 92, 012805 
(2015).
*** For more details about the benchmark see https://doi.org/10.1063/5.0046047.
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● Static benchmark * : 
○ Scale-free degree distributions
○ Scale-free module size distributions.

https://doi.org/10.1063/5.0046047
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Benchmark for time-dependent module detection

* A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical review E 78, 046110 (2008).
** C. Granell, R. K. Darst, A. Arenas, S. Fortunato, and S. G omez, Benchmark model to assess community structure in evolving networks, Physical Review E 92, 012805 
(2015).
*** For more details about the benchmark see https://doi.org/10.1063/5.0046047.

Optimal parameters
૪= 0.55 and ω = 1
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● Static benchmark * : 
○ Scale-free degree distributions
○ Scale-free module size distributions.

● Temporal evolution on this 
based on two different 
dynamic processes**:

○ Division of communities.
○ Contraction of communities.
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Results

We obtained the time-dependent modular structure 
of fMRI functional connectivity networks 

We focused on two metrics related to the dynamics of communities :
- Largest multilayer module (LMM)  -identified with dynamic core-

- Flexibility, which we interpreted as the degree of differentiation of the 
dynamic core. 
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(fraction of nodes in biggest module)

(rate of alternation)



(rate of alternation)
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- Flexibility

- Largest multilayer module (LMM)

LMM

<
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Decreased flexibility during sleep

Increased flexibility during sleep

Flexibility (LMM)  during Wake 
vs. sleep stages
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Majority of nodes decreased their flexibility during 
sleep -> In regions related to sensory perception. In 
particular, flexibility decreases during N1 sleep were 
observed mostly for thalamic nodes, consistent with 
the observation that the thalamus becomes 
deactivated and disconnected from sensory cortices 
during early sleep. 

Conversely, flexibility increased during sleep only in 
frontal regions associated with higher cognitive 
functions, with the strongest increases seen during N3 
sleep. Decreased flexibility during sleep
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Results
A: Significant differences in the regional probability of 
belonging to the largest multilayer module (LMM) 
for wakefulness vs. N3 sleep (left) and vs. LOC. 

While changes were more widespread and 
significant during N3 sleep, LOC was also 
associated with decreases in sensorimotor regions, 
and increases in frontal regions
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spatial pattern of changes.
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Results

B: A Scatter plot of the change in the probability of 
belonging to the LMM for N3 vs. LOC, it shows a similar 
spatial pattern of changes.

C: Boxplots for the normalized size of the largest 
multilayer module. In both cases (N3 sleep and LOC), 
the LMM decreased in size during loss of 
consciousness.

A: Significant differences in the regional probability of 
belonging to the largest multilayer module (LMM) 
for wakefulness vs. N3 sleep (left) and vs. LOC. 

While changes were more widespread and 
significant during N3 sleep, LOC was also 
associated with decreases in sensorimotor regions, 
and increases in frontal regions
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Conclusions
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- We found converging evidence of a reconfiguration of the largest multilayer module during 
deep sleep and general anesthesia:

- Size of LMM was reduced during deep sleep and general anesthesia -> Supports the hypothesis 

that consciousness can vanish as a consequence of fragmented dynamic core.

- The regional correlation of the changes in the probability of belonging to the LLM during 
deep sleep and anesthesia suggests that this metric could capture a signature of loss of 
consciousness present in both conditions.

- Flexibility decreased during sleep: Majority of the regions decreased their rate of alternation 

between the LMM and the rest of the modules, paralleling the consolidation of deeper sleep 

stages.

- Future studies should assess whole-brain dynamics simultaneously with different methods to 

understand whether the dynamic core fluctuates over scales inaccessible to fMRI, and 

whether these fluctuations are manifest at the behavioral and cognitive levels.  
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Thank you!



Pablo Balenzuela Enzo Tagliazucchi
Me
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Thank you!



Appendix



fMRI time series and communities



Time-dependent benchmark algorithm

Null model based on division of communities: Division

The combination of these 
two processes allowed us 
to represent the most 
frequent behaviours seen 
in the dynamics of brain 
real modular systems ***



Time-dependent benchmark algorithm

Null model based on expansion-contraction of communities: Contraction



Time-dependent benchmark algorithm

The coefficient of the power law 
for the degree distribution, α(t), 
and the standard deviation of for 
both dynamics vs time.



Louvain method for community detection 
implemented in MATLAB

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain



Regional probability of belonging to the thalamic module


