
# Can crowdsourcing rescue the social marketplace of ideas?

Taha Yasseri
School of Sociology and Geary Institute for Public Policy
University College Dublin

Buenos Aires, 8 Feb 2023





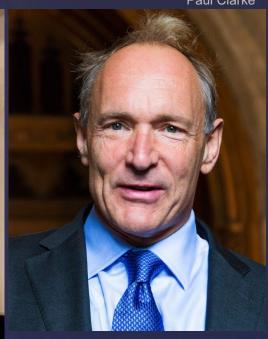


Sanhorn Chen (Pinterest)



NGC 4414 (Source: The Hubble Heritage Team)




Brücke Osteuropa

CERN (1954 –)

@TahaYasseri







Tim Berners-Lee

WWW (1989)

Dot-com bubble (1990's)

# Web2.0 (1999)





## Zeroth Law of Wikipedia: In theory it should never work, it only works in practice!

connectedincairo.com







2006

Arab Spring (2010-2012)

## Social Media







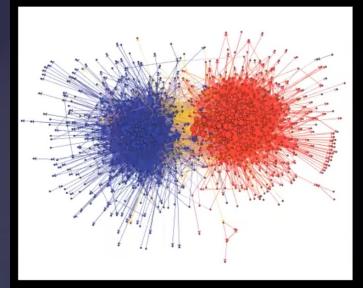


The Guardian

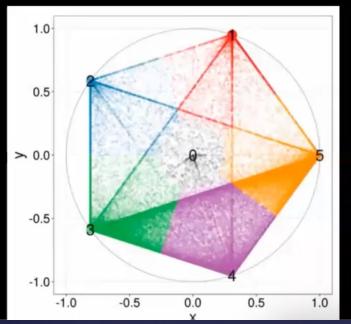
@TahaYasseri



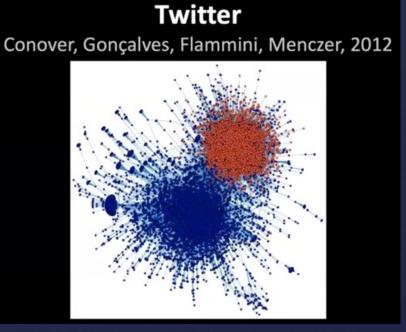
Controversial tweet.


20:21 · 2019-03-20 · Twitter Web Client 23 Retweets 351 Likes Brock Baker @ @BrockBaker · 4h apologize for my controversial tweet. C 280 24 Segtendo @Segtend0 · 4h Replying to @BrockBaker ANGRY TWEET IN ALL CAPS

## Now


- Polarization
- Hate-speech
- Misinformation

## Social Media


How did a new technology make people dumber?



**Blogs**Adamic & Glance, 2005



Facebook Schmidt, 2017



## Polarization

## Why Does Wikipedia Work and Social Media Don't?

The Paradox of Openness in the Digital Age

#### Wikipedia Wars: 10 Biggest Edit Battles

We round up the most heated, most bitterly contested, and most pointless confrontations over facts in Wikipedia's 10-year history. What makes people leap into these frays will amaze and amuse you.

By David Daw, PCWorld Jul 26, 2011 3:00 am



Wikipedia Idiots: The Edit Wars of San Francisco

## The Telegraph

Michael Jackson's death sparks Wikipedia editing war

## Wikipedia Edit Wars



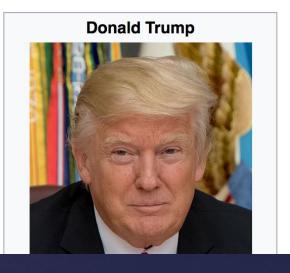
Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help
About Wikipedia
Community portal
Recent changes
Contact page



#### Donald Trump


From Wikipedia, the free encyclopedia

For other uses, see Donald Trump (disambiguation).

Read

**Donald John Trump** (born June 14, 1946) is the 45th and current President of the United States. Before entering politics, he was a businessman and television personality.

Trump was born and raised in Queens, New York
City, and earned an economics degree from the
Wharton School. Later, he took charge of The Trump
Organization, the real estate and construction firm
founded by his paternal grandmother, which he ran
for 45 years until 2016. During his real estate career,
Trump built, renovated, and managed numerous



Search Wikipedia

Talk Sandbox Preferences Beta Watchlist Contributions Log out

View history

View sou ce

02:03, 21 June 2017 General Ization (talk I contribs) m ... (302,073 bytes) (-260) ... (Reverted edits by PerfectlyIrrational (talk) to last version by Moxy) (thank) 01:53, 21 June 2017 PerfectlyIrrational (talk I contribs) ... (302,333 bytes) (+260) ... (More pictures) (thank) 23:56, 20 June 2017 Moxy (talk I contribs) m ... (302,073 bytes) (-184) ... (Reverted edits by PerfectlyIrrational (talk) to last version by Power~enwiki) (thank) 23:51, 20 June 2017 PerfectlyIrrational (talk I contribs) ... (302,257 bytes) (+184) ... (Undid revision 786684669 by PerfectlyIrrational (talk) (thank) 23:51, 20 June 2017 PerfectlyIrrational (talk I contribs) ... (302,073 bytes) (-184) ... (thank) PerfectlyIrrational (talk I contribs) ... (302,257 bytes) (+184) ... (thank)

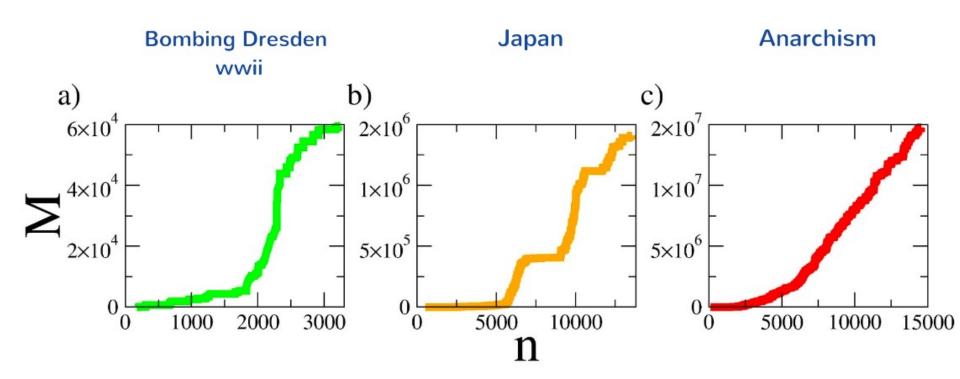
## Wikipedia Reverts

#### Network of reverts



- January 2001 October 2011
- 13 languages
- 4.7 million reverts

#### Data


Value production in a collaborative environment T Yasseri & J Kertész Journal of Statistical Physics **151** (3-4), 414-439 (2013)

| M top-10 lists        |                               |                                  |                                |                                      |
|-----------------------|-------------------------------|----------------------------------|--------------------------------|--------------------------------------|
| English               | German                        | French                           | Spanish                        | Czech                                |
| George W. Bush        | Croatia                       | Ségolène Royal                   | Chile                          | Homosexuality                        |
| Anarchism             | Scientology                   | Unidentified flying<br>object    | Club América                   | Psychotronics                        |
| Muhammad              | 9/11 conspiracy the-<br>ories | Jehovah's Witnesses              | Opus Dei                       | Telepathy                            |
| LWWEe                 | Fraternities                  | Jesus                            | Athletic Bilbao                | Communism                            |
| Global warming        | Homeopathy                    | Sigmund Freud                    | Andrés Manuel<br>López Obrador | Homophobia                           |
| Circumcision          | Adolf Hitler                  | September 11 attacks             | Newell's Old Boys              | Jesus                                |
| United States         | Jesus                         | Muhammad al-Dur-<br>rah incident | FC Barcelona                   | Moravia                              |
| Jesus                 | Hugo Chávez                   | Islamophobia                     | Homeopathy                     | Sexual orientation<br>change efforts |
| Race and intelligence | Minimum wage                  | God in Christianity              | Augusto<br>Pinochet            | Ross Hedvíček                        |
| Christianity          | Rudolf Steiner                | Nuclear power de-<br>bate        | Alianza Lima                   | Israel                               |

#### M: Measure of Controversy of the Article

T. Yasseri, A. Spoerri, M. Graham, & J. Kertész. "The most controversial topics in Wikipedia: A multilingual and geographical analysis." (2013)

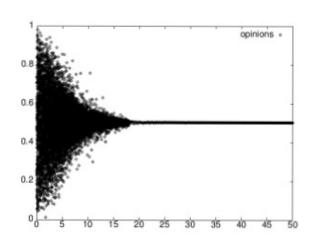
#### M: Controversy measure



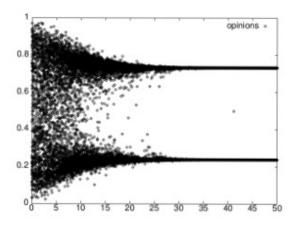
Dynamics of Conflicts in Wikipedia Yasseri T, Sumi R, Rung A, Kornai A, Kertész J (2012), PLoS ONE 7(6): e38869

#### **Deffuant Model**

Mixing beliefs among interacting agents Guillaume Deffuant et al, Advs. Complex Syst. 03, 87 (2000)


N editors opinion  $x_i \in [0,1]$ 




#### **Bounded Confidence Model**



$$\varepsilon_T = \begin{cases} x_i \\ x_j \end{cases} \longrightarrow \begin{cases} x_i + \mu_T(x_j - x_i) \\ x_j + \mu_T(x_i - x_j) \end{cases}$$
 agree



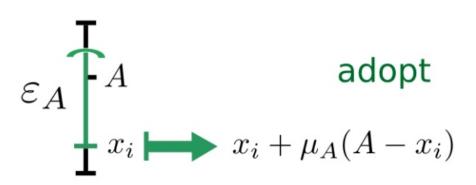
Large Tolerance



**Small Tolerance** 

#### Additional Ingredient

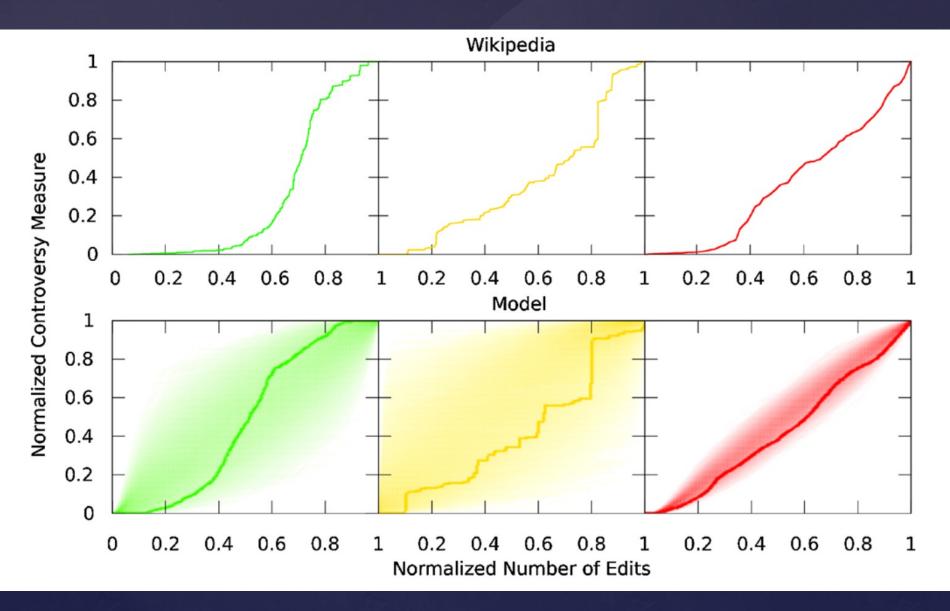
## Editor-article interaction


 $\mathbf{1}$  article state  $\mathbf{A} \in [0, 1]$ 




 $\varepsilon_A = A + \mu_A(x_i - A)$   $\varepsilon_A = A$   $\operatorname{edit}$ 

Opinions, Conflicts, and Consensus: Modeling Social Dynamics in a Collaborative Environment


Török J., Iñiguez G., Yasseri T., San Miguel M., Kaski K., and Kertész J. (2013) Phys. Rev. Lett. 110, 088701





convergence parameter

#### Calibration



Main Messages

1. Collaboration encourages consensus

#### PLOS ONE





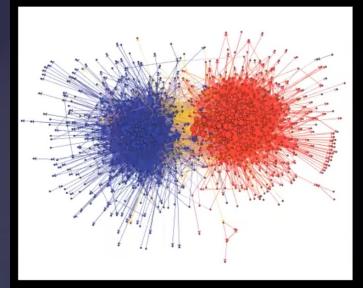
RESEARCH ARTICLE

#### Understanding and coping with extremism in an online collaborative environment: A data-driven modeling

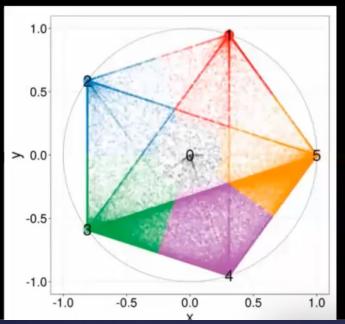
Csilla Rudas, Olivér Surányi, Taha Yasseri, János Török 🖂

Published: March 21, 2017 • https://doi.org/10.1371/journal.pone.0173561

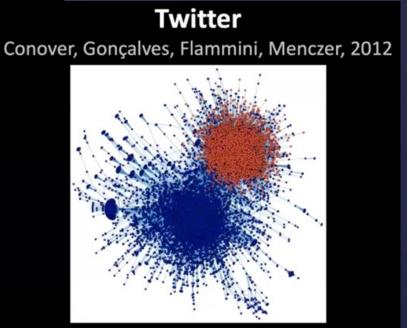
2. Banning editors with extreme opinions postpones the consensus


#### There is an upside to anger—or, at least, moderate discord....

**Evan Rachel Wood** 

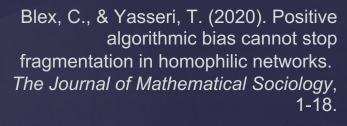


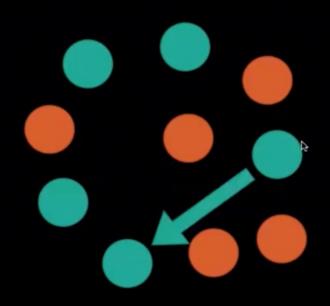

Fiadeiro & Yasseri (Forthcoming)


3. Certain amount of conflict increases the quality



**Blogs**Adamic & Glance, 2005





Facebook Schmidt, 2017



## Polarization

#### A model with homophily

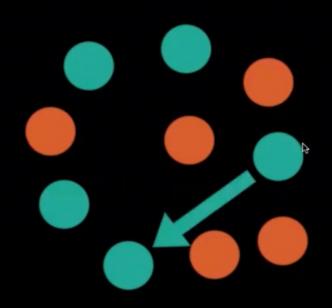




$$p_t = 1 - q_t = f\left(\frac{\mathbb{E}\left[E_{d,t-1}\right]}{E_{t-1}}\right) \tag{1}$$

$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + \sum_{i=0}^{t} k_{d,t-j} q_{i,t-1-j}$$
(2)

where f' > 0 and f'' < 0


The derivative of the probability of making similar connections with respect to the probability of making dissimilar connections is given by

$$\frac{\partial}{\partial q_{i,t-1}} p_{i,t} = f' \left( \frac{\mathbb{E}[E_{d,t-1}]}{E_{t-1}} \right) t^{-1} > 0$$
(3)

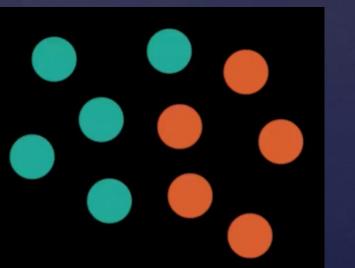
This implies that as  $t \to \infty$ ,  $\frac{\partial}{\partial q_{i,t-1}} p_{i,t} \to 0$ . And thus for all strictly monotonically increasing concave functions f on [0,1],  $p_{i,t} \to 1$ , implying  $q_{i,t} \to 0$  and  $\mathbb{E}[E_{d,i,t}] \to 0$ .

#### A model with homophily

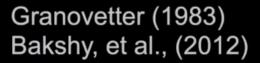
Blex, C., & Yasseri, T. (2020). Positive algorithmic bias cannot stop fragmentation in homophilic networks. *The Journal of Mathematical Sociology*, 1-18.

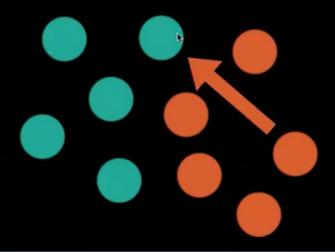


$$p_t = 1 - q_t = f\left(\frac{\mathbb{E}\left[E_{d,t-1}\right]}{E_{t-1}}\right) \tag{1}$$


$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + \sum_{i=0}^{t} k_{d,t-j} q_{i,t-1-j}$$
(2)

where f' > 0 and f'' < 0


The derivative of the probability of making similar connections with respect to the probability of making dissimilar connections is given by


$$\frac{\partial}{\partial a_{i,t-1}} p_{i,t} = f' \left( \frac{\mathbb{E}[E_{d,t-1}]}{E_{t-1}} \right) t^{-1} > 0 \tag{3}$$

This implies that as  $t \to \infty$ ,  $\frac{\partial}{\partial q_{i,t-1}} p_{i,t} \to 0$ . And thus for all strictly monotonically increasing concave functions f on [0,1],  $p_{i,t} \to 1$ , implying  $q_{i,t} \to 0$  and  $\mathbb{E}[E_{d,i,t}] \to 0$ .



#### A model with homophily and weak ties





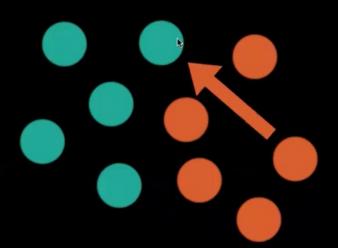
$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + q_{i,t}p_{k,t} + p_{i,t}q_{k,t} + k_dE_{d,i,t-1}$$

After substituting the expression for  $E_{d,k,t}$ , iterating the equation backwards and considering it in continuous time:

$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + q_{i,t}p_{k,t} + p_{i,t}q_{k,t} + \sum_{j=0}^{t} k_{d,t-j}[q_{i,t-j-1} + q_{i,t}p_{k,t-j-1} + p_{i,t-j-1}q_{k,t-j-1}]$$

**Theorem 2** For any concave strictly monotonically increasing function  $f:[0,1] \rightarrow [0,1]$ ,  $p_t$  converges to 1 and thus  $\mathbb{E}[E_{d,t}]$  converges to zero, even in the presence of secondary ties.

#### 4.2. Proof


The derivative of Eq (3) has now changed to

$$\frac{\partial}{\partial q_{i,t-1}} p_{i,t} = f' \left( \frac{\mathbb{E}[E_{d,t-1}]}{E_{t-1}} \right) \frac{1 + p_{k,t-1}}{t} = f' \left( \frac{\mathbb{E}[E_{d,t-1}]}{E_{t-1}} \right) \frac{1 + (1 - q_{k,t-1})}{t} > 0$$

Given that  $p_{k,t}$  is bounded in [0,1] for all t, this means that the derivative converges to zero. Note that the convergence rate is being slowed down compared to the result of the *Homophily Theorem*, but that this deceleration quickly declines over time as t increases and by symmetry  $q_{k,t-1}$  decreases. Thus, for all strictly monotonically increasing functions f on [0,1],  $p_{i,t} \to 1$ , implying  $q_{i,t} \to 0$  and  $\mathbb{E}\big[E_{d,i,t}\big] \to 0$ , even in the presence of weak ties.

#### A model with homophily and weak ties

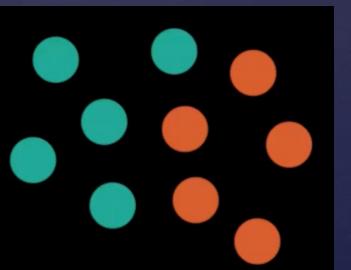
Granovetter (1983) Bakshy, et al., (2012)



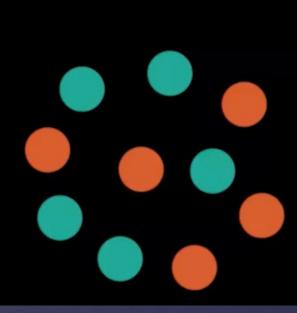
$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + q_{i,t}p_{k,t} + p_{i,t}q_{k,t} + k_dE_{d,i,t-1}$$

After substituting the expression for  $E_{d,k,t}$ , iterating the equation backwards and considering it in continuous time:

$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + q_{i,t}p_{k,t} + p_{i,t}q_{k,t} + \sum_{j=0}^{t} k_{d,t-j}[q_{i,t-j-1} + q_{i,t}p_{k,t-j-1} + p_{i,t-j-1}q_{k,t-j-1}]$$


**Theorem 2** For any concave strictly monotonically increasing function  $f:[0,1]\rightarrow[0,1]$ ,  $p_t$  converges to 1 and thus  $\mathbb{E}\big[E_{d,t}\big]$  converges to zero, even in the presence of secondary ties.

#### 4.2. Proof


The derivative of Eq (3) has now changed to

$$\frac{\partial}{\partial q_{i,t-1}} p_{i,t} = f' \left( \frac{\mathbb{E}[E_{d,t-1}]}{E_{t-1}} \right) \frac{1 + p_{k,t-1}}{t} = f' \left( \frac{\mathbb{E}[E_{d,t-1}]}{E_{t-1}} \right) \frac{1 + (1 - q_{k,t-1})}{t} > 0$$

Given that  $p_{k,t}$  is bounded in [0,1] for all t, this means that the derivative converges to zero. Note that the convergence rate is being slowed down compared to the result of the *Homophily Theorem*, but that this deceleration quickly declines over time as t increases and by symmetry  $q_{k,t-1}$  decreases. Thus, for all strictly monotonically increasing functions f on [0,1],  $p_{i,t} \to 1$ , implying  $q_{i,t} \to 0$  and  $\mathbb{E}[E_{d,i,t}] \to 0$ , even in the presence of weak ties.



#### A positive algorithmic bias?



$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + \sum_{j=0}^{t} k_{d,t-j} q_{i,t-1-j}$$

$$+ \sum_{j=0}^{t} k_{b,t-j} \sum_{l=1}^{t} \left( \phi_{i,t-l} - k_{s,t-l} \right) \left( t - l - 1 - q_{i,t-l-1} \right)$$

$$+ \left( \phi_{i,t} - k_{s,t} \right) \left( t - 1 - q_{i,t-1} \right)$$

with  $k_d < k_b < k_s$  and k being assumed to be a Weibull process  $k = 1 - \lambda^{-\gamma} \gamma t^{\gamma - 1}$ , where  $\lambda \ge 1$  is a scale parameter and  $\gamma < 1$ .

Consider the equation above with all variables at their steady-state value, denoted here by an \*. N.B. that k in all cases converges to one for large t.

$$\mathbb{E}\big[E_{d,i,t^*}\big] = q^* + t^*q^* + t^*(t^* - 1)(\phi^* - 1)(t^* - 2 - q^*) + (\phi^* - 1)(t^* - 1 - q^*)$$

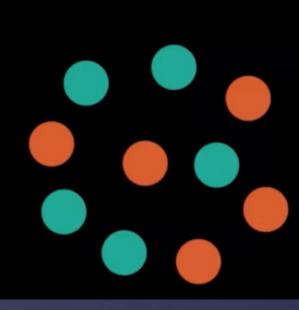
Since  $\phi$  is bounded on [0,1] for all t, the optimal and in this case, the minimal level of bias is the boundary solution  $\phi^* = 1$ . This implies that every similar connection is changed to a dissimilar connection. Consequently,

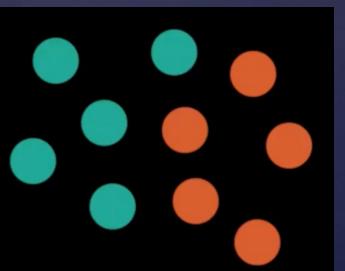
$$\mathbb{E}\big[E_{d,i,t^*}\big] = (1+t^*)q^*$$

And

$$\frac{\mathbb{E}[E_{d,i,t^*}]}{\mathbb{E}[E_{s,i,t^*}]} = \frac{(1+t^*)q^*}{(1+t^*)p^*} = \frac{q^*}{p^*}$$

For the probability of making similar connections in the steady-state this implies


$$p^* = f\left(\frac{\mathbb{E}\left[E_{d,i,t-1^*}\right]}{t^*}\right),\,$$


which in the limit converges to

$$p^* = f(1)$$
 for  $q_{t^*-1} > 0$ 

The latter implies  $p^* = 1$  and therefore  $q^* = 0$  and  $\mathbb{E}[E_{d,i,t^*}] = 0$ . Thus, for any  $\phi^* < 1$ ,  $\mathbb{E}[E_{d,i,t^*}]$  diverges and in fact becomes negative, while for  $\phi^* = 0$ ,

#### A positive algorithmic bias?





$$\mathbb{E}[E_{d,i,t}] = q_{i,t} + \sum_{j=0}^{t} k_{d,t-j} q_{i,t-1-j}$$

$$+ \sum_{j=0}^{t} k_{b,t-j} \sum_{l=1}^{t} \left( \phi_{i,t-l} - k_{s,t-l} \right) \left( t - l - 1 - q_{i,t-l-1} \right)$$

$$+ \left( \phi_{i,t} - k_{s,t} \right) \left( t - 1 - q_{i,t-1} \right)$$

with  $k_d < k_b < k_s$  and k being assumed to be a Weibull process  $k = 1 - \lambda^{-\gamma} \gamma t^{\gamma-1}$ , where  $\lambda \ge 1$  is a scale parameter and  $\gamma < 1$ .

Consider the equation above with all variables at their steady-state value, denoted here by an \*. N.B. that k in all cases converges to one for large t.

$$\mathbb{E}\big[E_{d,i,t^*}\big] = q^* + t^*q^* + t^*(t^* - 1)(\phi^* - 1)(t^* - 2 - q^*) + (\phi^* - 1)(t^* - 1 - q^*)$$

Since  $\phi$  is bounded on [0,1] for all t, the optimal and in this case, the minimal level of bias is the boundary solution  $\phi^* = 1$ . This implies that every similar connection is changed to a dissimilar connection. Consequently,

$$\mathbb{E}\big[E_{d,i,t^*}\big] = (1+t^*)q^*$$

And

$$\frac{\mathbb{E}[E_{d,i,t^*}]}{\mathbb{E}[E_{s,t,t^*}]} = \frac{(1+t^*)q^*}{(1+t^*)p^*} = \frac{q^*}{p^*}$$

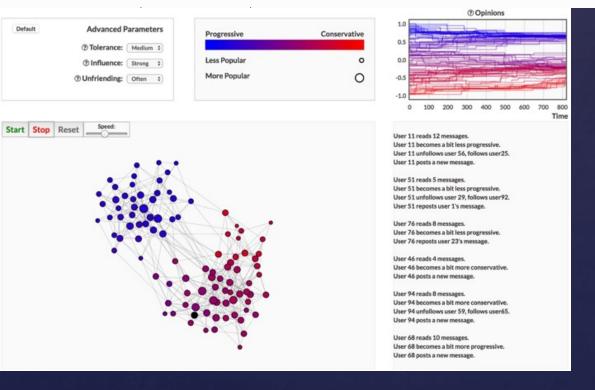
For the probability of making similar connections in the steady-state this implies

$$p^* = f\left(\frac{\mathbb{E}\left[E_{d,i,t-1^*}\right]}{t^*}\right),\,$$

which in the limit converges to

$$p^* = f(1)$$
 for  $q_{t^*-1} > 0$ 

The latter implies  $p^* = 1$  and therefore  $q^* = 0$  and  $\mathbb{E}[E_{d,i,t^*}] = 0$ . Thus, for any  $\phi^* < 1$ ,  $\mathbb{E}[E_{d,i,t^*}]$  diverges and in fact becomes negative, while for  $\phi^* = 0$ ,


4. Costless rewiring and homophily are responsible for polarization and they are hard to fight

## 4. Costless rewiring and homophily are responsible for polarization and they are hard to fight

## Social influence and unfollowing accelerate the emergence of echo chambers

<u>Kazutoshi Sasahara</u> ⊆, <u>Wen Chen</u>, <u>Hao Peng</u>, <u>Giovanni Luca Ciampaglia</u>, <u>Alessandro Flammini</u> & <u>Filippo</u> Menczer

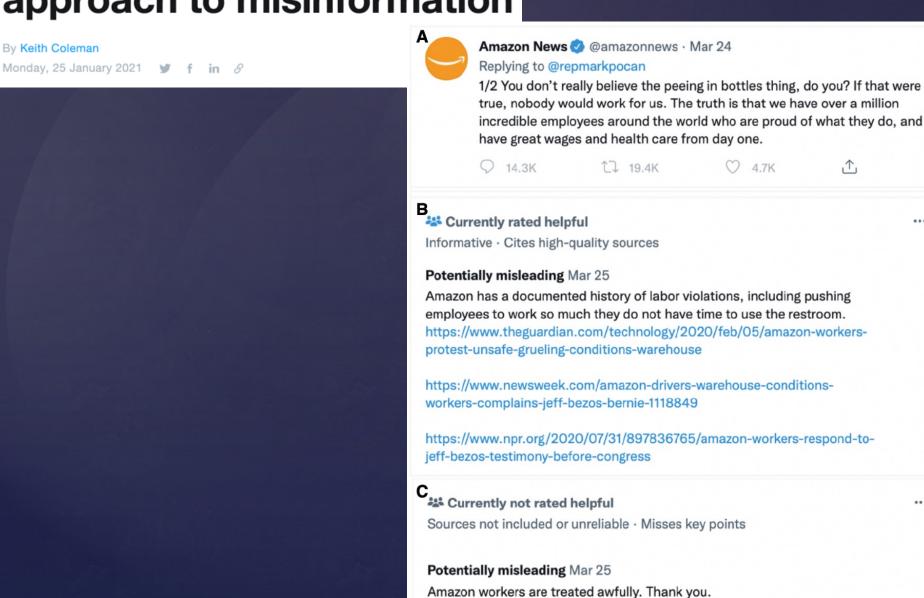
Journal of Computational Social Science (2020) Cite this article



## Solution?

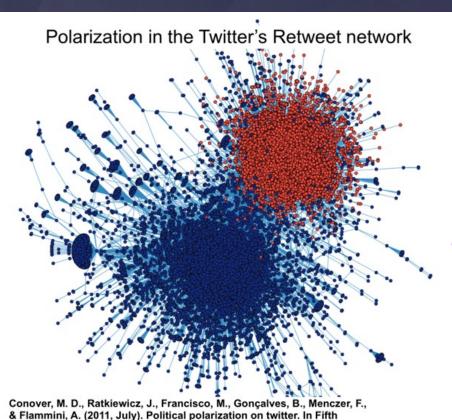


Pre-Internet life?


Ullstein Bild

arxiv.org/pdf/2104.13754.pdf

Can crowdsourcing rescue the social marketplace of ideas?


Taha Yasseri<sup>1,2,3,4</sup>\*, Filippo Menczer<sup>5,6</sup>

# Introducing Birdwatch, a community-based approach to misinformation



#### Data:

2,323 Tweets 2,756 Birdwachers 5,798 notes 36,786 votes



international AAAI conference on weblogs and social media.

contributors' agreement network

Polarization among the Birdwatch

Yasseri, T., & Menczer, F. (2021). Can crowdsourcing rescue the social marketplace of ideas?. arXiv preprint arXiv:2104.13754.

## Hang on! Crowd-sourcing, Collaboration, Validation?

Experiment!

## Collaborative "birdwatching"



Direct Engagement Co-Ownership

# Design matters Connections matter Community matters

## Thank you!

Robert Sumi, András Rung, András Kornai, János Török, János Kertész, Gerardo Iñiguez, Kimmo Kaski, Maxi San Miguel, Anselm Spoerri, Mark Graham, Milena Tsvetkova, Ruth Garcia, Csilla Rudas, Olivér Surányi, Joao Fiadeiro, and Luciano Floridi, Fil Menczer, Chris Blex.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No 645043.



@TahaYasseri
School of Sociology, University College Dublin tahayasseri.com