

Instituto de Ciencias de la Computación

Dynamics matter: A simulation framework to study diffusion processes on a Dynamic Product Space

Tobias Carreira Munich

tcarreira@dc.uba.ar University of Buenos Aires and ICC-CONICET, Argentina.

Ezequiel Pecker-Marcosig

emarcosig@dc.uba.ar University of Buenos Aires and ICC-CONICET, Argentina.

Rodrigo Castro

rcastro@dc.uba.ar University of Buenos Aires and ICC-CONICET, Argentina.

SED Event Simulation Lab

Motivation

- Understanding the patterns of economic growth stands as a key tool for development planning and economic policy making.
- The discipline of **Economic Complexity** offers a framework to approach the **study of interconnected economies** as a Complex Adaptive System that evolves in time driven by strongly non-linear dynamics.
- A well known example is the **Product Space** (PS), an analytical framework proposed by Hidalgo et al. (2007) to assess potential paths of development of countries in relation to their import/export capabilities.

The Product Space

Our goal: Conduct **what-if prospective analyses** using the Product Space framework.

1.0x10⁸

3.7x10

7.5x10⁰

1.5(10

The Product Space - nodes and edges

The edge weight represents the probability of exporting product A given a country already exports another product B (and vice versa).

Data source

We followed the methodology used by Hidalgo et al. (2007) to simulate diffusion in the PS.

To build the PS we used public datasets:

- generated by the National Bureau of Economic Research (NBER) project (Feenstra et al. 2005)
- world trade flows ranging from 1998 to 2000
- classified using the Standard International Trade Classification rev. 2 at the four-digit level (SITC-4 rev. 2)
- 775 products and 190 countries

Formal definition of the Product Space

The Product Space is defined based on the **Revealed Comparative Advantage** (RCA) of each country in the list of products, taken from the data:

$$M_{c,p}^0 = egin{cases} 1 & ext{if } RCA_{c,p} > 1 & ext{c: country} \ 0 & ext{otherwise} & ext{p: product} \end{cases}$$

The relation between products i and j is given by the **Proximity Matrix** Φ . The proximity must be interpreted as a probability:

$$\Phi_{i,j} = \min\{P_{i,j}, P_{j,i}\}, \text{ with } P_{i,j} = \frac{\sum\limits_{c} M_{c,i} M_{c,j}}{\sum\limits_{c} M_{c,i}}$$

c: country i,j: products

The diffusion process over the PS

The **proximity** Π between a country **c** and a product **p**, in terms of the **potential to export p** in the future, depends on the proximity of the nearest exported good p' in the network:

$$\Pi_{c,p}^{t} = \max_{p'} \{ \Phi_{p,p'} \cdot M_{c,p'}^{t} \}$$
 p: product
p': exported product
t: simulation time

Diffusion process: Given a **Proximity threshold** Ω , a country will upgrade its economy to produce all products with $\Pi > \Omega$ during the simulation cycle.

Proposal: A Dynamic Product Space (DPS)

The originally introduced proximity matrix $\Phi_{i,j}$ is a static element, which we consider a **debatable simplification**.

We propose instead a **Dynamic Proximity Matrix** Φ^{t} :

$$\Phi_{i,j}^t = \min\{P_{i,j}^t, P_{j,i}^t\}, \text{ with } P_{i,j}^t = \frac{\sum\limits_{c} M_{c,i}^t M_{c,j}^t}{\sum\limits_{c} M_{c,i}^t}$$

The discrete time dynamics $\Phi^{t} = f(\Phi^{t-1})$ are a consequence of the use $\prod_{c,p}^{t-1}$ in the definition of $M_{c,p}^{t}$.

Network diffusion comparison: DPS vs. SPS

- **Germany** starts with **354 products** placed **mostly in the core** of the PS (cycle 0).
- With the SPS, Germany develops **63 new products** (17.8% growth).
- Argentina starts with 163 products mostly distributed in the periphery of the PS, and manages to develop up to 157 new products (96.3% growth) in 4 cycles.

The network visualization helps with understanding and discovering potential development opportunities.

Meanwhile, **Argentina** develops **271 new products** (171.2% growth).

- Network diffusion comparison: DPS vs. SPS
- Using DPS, **Germany** develops **131 new products** (37.0% growth).

Products exported in time with different $\boldsymbol{\Omega}$

Number of products developed for Argentina and Germany is compared using SPS and DPS with different values of Ω .

Most simulation scenarios converge already within 2 to 4 cycles.

Exports quantity at the end of simulation

Top panel Compare Argentina and Germany against the global mean.

Bottom panel Distribution of the differences between SPS and DPS for all countries.

Clear **non trivial differences** are observed between simulation scenarios for Ω between 0.5 and 0.6 suggesting that **in the PS framework, dynamics matter**.

The EB-DEVS formalism

Experimentation: we developed a simulation framework based on the **Emergent Behavior-DEVS** (EB-DEVS) formalism (Foguelman et al. 2020).

EB-DEVS formalism:

- Specifies mathematical models that are unambiguous by construction => making them easy to understand and reproduce.
- Specifically designed to model **complex adaptive systems**.

Foguelman et al. "EB-DEVS: A formal framework for modeling and simulation of emergent behavior in dynamic complex systems." Journal of Computational Science 53 (2021): 101387.

EB-DEVS agents model

The Dynamic Product Space model in EB-DEVS:

- Each country is an agent. Matrix Φ^t is a macroscopic state variable.
- The macroscopic state can be influenced by all countries.
- Φ^t influences the evolution of each agent (whether it will produce a new product or not).

• This micro-macro interaction is formally defined in EB-DEVS.

Conclusions

- We introduced a simulation framework to test diffusion processes over the Product Space, including a dynamic extension termed Dynamic Product Space.
- We compared this model against its static counterpart, showing that for some relevant parameters the difference in the results can be significant.
- Our framework allows to flexibly study different network metrics, PS representations and types of dynamics.
- This simulation tool will allow for richer simulation-based research, focused in specific countries and/or products, to explore development strategies.
- Next steps:
 - Make the Ω threshold a function of the country.
 - Study regional trading blocs.
 - Interaction with labor flows network (collaboration with V. Semeshenko and S. De Raco).

Instituto de Ciencias de la Computación

Dynamics matter: A simulation framework to study diffusion processes on a Dynamic Product Space

T. Carreira Munich[†], E. Pecker-Marcosig, R. Castro

Thanks for your attention!

Questions?

†<u>tcarreira@dc.uba.ar</u>

https://git-modsimu.exp.dc.uba.ar/tobiascarreira/product-space

SED Discrete Event Simulation Lab

NetSciX 2023 February 7th - 10th

EB-DEVS Coupled Model

class Country(AtomicDEVS):

```
def __init__(self, name=None, competitive_exports=None):
    super(Country, self).__init__(name)
    self.state = {"competitive_exports": competitive_exports}
    self.in_port = self.addInPort("diffusion")

def __lt__(self, other):
    return self.name < other.name</pre>
```

```
def extTransition(self, inputs):
    for port, value in inputs.items():
        if port.name == "diffusion":
            self.diffuse(value, self.parent.getContextInformation(ProductSpaceProps.PHI_MATRIX))
            self.y_up = (self.name, self.state["competitive_exports"])
        return self.state
```

```
def diffuse(self, big_omega, phi_matrix):
    pi = (phi_matrix @ np.diagflat(self.state["competitive_exports"])).max(1)
    self.state["competitive_exports"] = pi > big_omega
```