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1 INTRODUCTION

1 Introduction

1.1 Motivation

The Internet is an always changing and expanding landscape, that, to this day,
is still very hard to keep track of without a constant access to a huge amount
of data. In Internet topology research exists an eminent interest to follow these
developments and the di�erences between the state of the IPv4 and IPv6 ar-
chitecture. The lack of available IPv4 addresses and the resulting increasing
demand for the expansion of the IPv6 network is further driving this interest
forward[11].
This is especially relevant when trying to research the Internet topology of a spe-
ci�c geographical region. While platforms such as RIPE Atlas[42] and CAIDA
Ark[1] have been collecting various forms of data about the Internet topology
worldwide for years, e.g. ping and traceroute outputs and information about au-
tonomous systems (ASes), there currently does not exist a platform that o�ers
the collection, processing and visualization of concrete and reoccurring data to
researchers and groups interested in the development of one speci�c geographi-
cal region.
As the necessary transition between the IPv4 and IPv6 architecture[17, 36]
is strongly in�uencing the current Internet landscape, the Complex Networks
and Data Communication Group[3] is repeatedly conducting research about the
Internet topology in Latin America. They already ran a number of di�erent
measurement campaigns to explore the network and closely observed the gap
between the IPv4 and IPv6 architecture[28]. To aid in these exploration cam-
paigns there exists a desire to develop a monitoring system for the Internet in
Latin America.
The possibility and requirements to create such a system, as well as the design
and analysis of an exemplary implementation will be discussed in this thesis.

1.2 Objectives

The objective of this project was to create a monitoring system that repeatedly
collects data about both the IPv4 and IPv6 Internet topology in Latin America
and visualizes the results, as well as making them accessible over a download
function. This data is then to be analyzed to displays disparities between the
two IP architectures by creating a network graph of the ASes and showing the
state and inter-connectivity of the ASes, as well as the speed of the network
tra�c.
To achieve these goals the systems needs to be able to:

• Collect data about the ASes in Latin America

• Select sources and targets for traceroute measurements

• Schedule the measurements

• Process the measurement results to obtain the distinct metrics of interest
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1 INTRODUCTION

Figure 1: Exemplary Internet Topology

• Save the results and processed results to a database to make them acces-
sible

• Present and visualize the current and historic results on a web page

• Provide a download function for selected results on the web page

1.3 Internet Fundamentals

1.3.1 Internet Network Topology

To select sources and destinations for the measurements and to be able to pro-
cess and visualize the collected data in a meaningful way, we have to understand
the architecture behind the Internet topology �rst.
A network topology in general describes the layout of a network. Within a net-
work topology the physical topology can be seen as a map of the location of
all physical network components and their cable layout. Due to the high cost
of changing the physical topology it is seldom a target of changes. The logical
topology, on the other hand, changes more frequently and describes the �ow of
data in a network. It displays which path any information would take to reach
its destination.[23]
The Internet network topology consists of many di�erent, interconnected sub-
networks, called domains or autonomous systems, and their internal structure.
Each AS belongs to a separate administrative authority and connects either
hosts to the Internet or other ASes and itself with each other (see Figure 1).
Inside one domain exist several routers that are forming the internal structure
of the AS and serve as access points for the hosts to connect to the Internet,
the intra-domain level. Here, each router is seen as a node. However, you can
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1 INTRODUCTION

also describe the Internet at the inter-domain level. Here, every AS represents
a single node in the network topology. The use of network protocols di�ers
between both levels to each address one node of the corresponding level.[20]
Due to the sheer size, lack of available information about each router and preva-
lent use of private IP addresses inside a single AS topology it is very di�cult
and demanding to extract meaningful information about the geographical lay-
out and inter-connectivity of a speci�c geographical region. Moving forward,
the focus was therefore set on the inter-domain level.

1.3.2 Internet Routing

You can project the two levels of the Internet topology, the intra- and inter-
domain level, directly onto Internet routing.
Intra-domain routing protocols, also known as interior gateway protocols, deter-
mine the �ow of a packet inside an AS. The most prominently used protocols for
this purpose are the Routing Information Protocol (RIP)[25] the Open Shortest
Path First (OSPF)[34]. RIP uses the route with the fewest routers between
a source and destination, while OSPF implements the Dijkstra algorithm for
the shortest path[13]. Inter-domain routing handles the packet �ow between
di�erent ASes. The most frequently used protocol in inter-domain routing is
the Border Gateway Protocol version 4 (BGP)[37]. BGP allows an AS to:

• Obtain information about subnet reachability from other ASes

• Forward this information to the internal routers

• Use this information and the AS policy to determine preferred routes to
subnets

In conclusion BGP secures that every subnet is known in the Internet by for-
warding its pre�x and the path to reach said pre�x over the whole network.[30]
However, these routing protocols do not assure that a package from one speci�c
source to a speci�c destination always takes the same path over the network.
Today's routers are commonly using load-balancing to reduce the load of a sin-
gle path. Depending on the network strain, a package stream can then be split
up and send out to the same destination over di�erent output interfaces and
therefore producing altering paths. This may happen by either per destination,
per �ow or per packet routing[16]:

• Per destination routing assigns each IP address of a subnet to a di�erent
output interface

• Per �ow routing assigns all packets with the same �ow identi�er (consisting
of IP source address, IP destination address, protocol, source port, and
destination port) to the same output interface

• Per packet routing assigns the output interface for each packet indepen-
dently

8



1 INTRODUCTION

1.4 Internet Measurements

Before talking about creating Internet measurements, the question is, why do
we need to measure the Internet?
When you use the Internet, you send a package from your device to a desti-
nation address using the TCP/IP-Stack. Your package is forwarded into the
intra-domain network of your Internet Service Provider. It is then, over sev-
eral other intra- and inter-domain networks, routed to the destination and the
response is send back. There is no way for us to follow our packet and know
where in the Internet topology we currently are. To gain knowledge about that,
we need to gather information about the path of our tra�c, by running mea-
surements and combine the results to build our topology. For that, one needs
to look at how to conduct network tra�c measurements in general �rst.
Tra�c needs to be created, which in turn, can then be dissected and analyzed
by using sni�ng tools or something similar. When researching the Internet
topology speci�cally, the traceroute tool is often used[40]. Traceroute sends a
packet to every router between a source and a destination by periodically in-
creasing the time to live (TTL) of the packets sent by one. After each packet,
the IP address of the destination router for the current TTL is displayed. If
a packet is lost on the way, an asterisk is displayed instead. This only works,
though, if every router on the way is forwarding each packet through the same
interface each time. As discussed in the last chapter, this is not always the case,
as load-balancing can alter the path of a packet stream. This means, that a
traceroute can potentially show misleading results regarding the supposed net-
work topology when two or more packets of the same traceroute are subject to
a change in the routing, as seen in Figure 2. The risk of altering paths increases
with the size of the network, as there are usually more possibilities to reach a
single destination and each router is processing more tra�c in general. This is,
why a tool to reduce the occurrence of these anomalies is needed to conduct
meaningful network tra�c measurements on a larger scale.[31]
Paris traceroute[15] is an open-source software, expanding on the commonly
known traceroute with the goal of drastically reducing the appearance of anoma-
lies caused by load-balancing while running traceroute measurements. This is
achieved by modifying the packet header �elds to create the same �ow modi�er
for all packets of a traceroute. Speci�cally, �elds, not used for load balancing,
in the �rst eight octets of the header are manipulated. For example, the Se-
quence Number �eld in TCP probes. This greatly increase the probability the
same path is taken when facing per-�ow load-balancing. Another strength is,
that Paris traceroute o�ers users a way to identify whether per �ow or per-
destination load-balancing is being used. It also �ags paths which may contain
anomalies reliably. For this, the probe TTL �eld was implemented. It displays
the TTL of the packet when the router decided to discard it. When facing nor-
mal traceroute behavior, this value is one as it will then be discarded due to an
exceeded TTL, which is why a di�erent value marks an anomaly. As resources
are needed to conduct Internet measurements, a high quality of the measure-
ment results is indispensable. Hence, the reduction in occurrences of anomalies
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1 INTRODUCTION

Figure 2: Exemplary anomalies in traceroutes caused by load-balancing
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2 PROJECT DESCRIPTION

makes Paris traceroute the preferred tool to use.
Applying the above stated for Internet measurements means: To achieve an
overview of the inter-domain Internet topology one needs to create network
tra�c between a multitude of sources and destinations and extract informa-
tion about the path of the package, for example using Paris traceroute. The
challenge when applying this to the Internet is creating the tra�c. Since the
Internet is fragmented into di�erent ASes with di�erent ownership, it is not
possible to simply run a measurement from any origin to any destination. To
tackle this problem, platforms launched probe projects, where multiple probes
are connected to the Internet, usually by program partners, worldwide to create
an own global network. These probes can then be used to act as the source of
traceroute, ping or other measurements to explore the Internet infrastructure
and obtain information about response times between certain network partici-
pants. Some of these platforms will be introduced in the next chapter.

2 Project Description

2.1 Data Collection

2.1.1 Platforms

Before we can collect any data we have to �nd platforms that can provide us
the data needed. To implement the full scope of the project we need a platform
to provide us:

• A list of ASes that are located in Latin America

• A means to identify an IP address of each AS to serve as a measurement
target

• A list of network probes located in Latin America to serve as a measure-
ment source

• A means to schedule and run Paris traceroute measurements

To collect the AS information the AS-Rank project from CAIDA was used. AS
Rank provides detailed, estimated data about ASes using Internet topology data
sets derived from traceroutes and BGP tables[12]. Importantly we can extract
information about the geological location and country name of the AS and the
size of their customer cone. Combining this information we can conclude a
profound assumption that the AS is in fact located in Latin America and run
by an Latin American organization. Because the country name of an AS data
set can, at times, be inaccurate the customer cone size can be used to assert the
status of the AS. A huge international organization will most likely not maintain
a small network on a di�erent continent to a small number of customers.
Next up was the assignment of an IP address to each AS. For this purpose data
sets mapping IP pre�xes to ASes, created from RouteViews Project data, were
used[2][9]. This is done pairing the ID of the AS with an IPv4 or IPv6 pre�x.
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2 PROJECT DESCRIPTION

Lastly, the other two requirements could be ful�lled with the functionalities of
the RIPE Atlas API[7]. The API allows to extract selected data about the
RIPE Atlas probes around the world. The probe data contains, once again,
information about the geographical location and country of the probe, that can
be used for the source selection. Besides that, the API also allows the creation
of measurements using the RIPE network. The measurement can be customized
and o�ers a lot of relevant �elds for us, such as:

• An IP address or URL as the target

• An array of RIPE probes as the source

• The IP protocol to be used

• The Type of measurement, e.g. traceroute or ping

For traceroute measurements there are a couple of other relevant �elds:

• The number of packets to be used for a single traceroute

• The transport layer protocol to be used

• Con�guration of Paris traceroute, if wanted

For further possibilities to include into the data payload see Listing 1. When
using the RIPE API for measurements there are a couple of limitations to con-
sider. Every measurement costs a speci�c number of credits, for example a
single traceroute has a unit cost of 10 * N * (int(S/1500) + 1), with N equal to
the number of packets and S as the packet size in octets [8]. Besides the credit
costs there are also limitations for the number of simultaneous measurements,
daily credit limit and more in place.

2.1.2 Target Selection

To pin down the target selection, we �rst have to de�ne which ASes, derived
from CAIDA AS-Rank, qualify as a valid measurement destination. Each AS
should meet the following criteria:

• Support for both IPv4 and IPv6 tra�c

• A geographical location (longitude and latitude) in Latin America

• An assigned country name of a Latin American country

• A customer cone size of less than 50

The customer cone describes the set of ASes, IPv4 pre�xes and addresses that
an AS can reach following only customer links.
The �rst criteria can be checked by searching for a pre�x of both IP protocols in
the IP-to-AS mapping data sets for each AS. This step is extremely important,
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2 PROJECT DESCRIPTION

exemplary_request = {
" d e f i n i t i o n s " : [

{
" t a r g e t " : " 202 . 152 . 100 . 2 " ,
" a f " : 4 ,
" d e s c r i p t i o n " : "Example measurement" ,
" p ro to co l " : "TCP" ,
" packets " : 8 ,
" s i z e " : 48 ,
" f i r s t_hop " : 2 ,
"max_hops" : 255 ,
" pa r i s " : 16 ,
" i n t e r v a l " : 3600 ,
" type" : " t r a c e r ou t e "

}
] ,
" probes " : [

{
" value " : [ 1526 , 2435 ,6536 , 6783 , 7536 ] ,
" type" : " probes " ,
" reques ted " : 5

}
] ,
" start_time " : "2019−07−07T12 : 0 0 : 0 0Z" ,
" stop_time" : "2019−07−07T15 : 0 0 : 0 0Z" ,
" b i l l_ to " : " r i p e . user@test . com"

}

Listing 1: Exemplary data payload of a RIPE Atlas API measurement request

13



2 PROJECT DESCRIPTION

since measurement results from a traceroute to an AS which can only commu-
nicate with one IP protocol can not be used to compare the di�erences in the
two architectures. To specify the list of Latin American countries, the LANIC
country directory was used[6]. Lastly, the limit for the customer cone size was
de�ned by previous experiences. Organizations with a size of 50 or smaller can
reliably be assumed to be a regional organization.

2.1.3 Source Selection

Lets take a look at the criteria for the source selection to see which RIPE probes
qualify as a potential source:

• Support for both IPv4 and IPv6 tra�c

• Being connected and active in the network

• A geographical location (longitude and latitude) in Latin America

To see if a probe is currently operational and capable to use both IP protocols
is fairly easy. Both the current status and IP interfaces can be extracted from
the initial probe data received from the RIPE Atlas API. The API allows to
�lter for speci�c arguments when �rst collecting the probe data. Therefore the
parameters for longitude and latitude can be used to restrict the discovery on
Latin American probes. Afterwards the criteria can be asserted and unwanted
data, such as probes from bordering countries, as the United States, can be
eliminated by running the AS belonging to the probe against or AS data set.
As the chosen platform may be hosting multiple probes per AS, this process may
leave behind more than one probe for one AS. However, as stated in Chapter
1.3.1, the focus was set on inter-domain networks. It can be assumed that one
speci�c AS will always forward tra�c to another speci�c AS over the same
outgoing interface. Hence, we can eliminate all but one probe for each AS, as
we can expect that the costs of the additional traceroutes will outweigh the
information gained from them.

2.1.4 Frequency

In chapter 2.1.1 we brie�y touched upon the costs and and limitations for RIPE
Atlas measurements. When talking about the frequency of the data collection
process these are very relevant.
Before discussing the scheduling of measurements the preconditions need to
be looked at. Both the procedures for target and source selection can be run
without any costs at any given time. This means that before any scheduled
measurement the most recent data can simply be obtained via the given plat-
forms.
The relevant limitations, per user, for our purpose are the following:

• No more than 100 simultaneous measurements

• No more than 100,000 results can be generated per day

14



2 PROJECT DESCRIPTION

• No more than 1,000,000 credits may be used each day

To give some context to these limitations, let us take a look at the estimated
scope of one complete measurement of the entire Latin American inter-domain
network. Considering current data (16. July 2019), we can calculate with
roughly 60 source probes and 2000 destination ASes. This means that a com-
plete campaign from every source to every destination would require around
120,000 traceroutes and 2000 measurements to be run for each IP protocol.
Adding the cost of roughly ten credits per traceroute, per packet, a full cam-
paign with a packet size of one has an estimated cost of 1,200,000 credits per
protocol.
Given the context and limitations, since one traceroute also produces one result,
a full campaign with minimal packet size would take three days to complete.
This means, that to acquire a higher frequency than that a user would need to
get into contact with RIPE to increase these limitations.
In conclusion, a normal RIPE Atlas user can, given that he owns the needed
credits, frequent a full campaign roughly every three days. However, since needs
and limitation may di�er between users the possible frequency of scheduling
measurements varies between users and should be able to be adjusted accord-
ingly in the program.

2.1.5 Storage

The last step of the data collection is the storage of the results. To achieve that,
a database needs to be available. Expanding on this, all the results and data
accumulated in the data collection process until this point need to be trans-
formed into a format that is compatible with the selected database. This will
be discussed in detail in chapter 3.3, Data Management. However, the storage
of the generated graphics needs to be thought through beforehand. While it is
de�nitely possible to store the images locally on the server, on which the sys-
tem will be hosted, it is desirable to also store them in the database, that will
necessary to store the results of the data collection. The images can then be
managed and accessed easier and the data requests of the web server can be run
without any additional interfaces involved. The requirements of these servers
and the database will be discussed in chapter 2.3.1, Components.
Considering the above stated and looking at the data we need to process through
our database, we need to design a system that contains:

• Entries for each scheduled measurement campaign

• Graphics that belong to one campaign each

• Measurements that belong to one campaign each

• Traceroutes that belong to one Measurement each

• optionally, Probe and AS data used in each campaign

This leaves us with the simpli�ed Entity Relationship Diagram in Figure 3.
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2 PROJECT DESCRIPTION

Figure 3: Simpli�ed ER Diagram of the database

2.2 Presentation

2.2.1 Graphic Selection

To get an overview over which results can be visualized in a meaningful way,
let us see �rst, what data is available and how it can be used. We will receive
several traceroute responses, from which we can, directly or using supplemental
tools, draw out information about:

• The IP addresses of every router along the path

• The AS belonging to the IP address

• The country of the AS

• The round-trip time (RTT) of every hop

• The protocols used

Looking at this information, we can use it to see which ASes are directly con-
nected with each other or which ASes are laying in between them. We can
also see the state of the connection by using the RTTs. Grouping the ASes by
country the results can also be scaled to a country or region like scale. Another
thing this can be used for is the degree of an AS, the number of neighbors it
has. When applying all this for both IP protocols and then comparing the re-
spective infrastructure, we can draw conclusions about the current state of the
IPv6 deployment.
To see possible solutions for the visualization, related papers can be used as a
reference[28]. Firstly, we can use the results grouped by country in combination
with the RTTs to create a heatmap, that displays the delay between a source
and destination. Since, depending on the scale of the campaign, the sample size
can be very high it is very likely that some results with extreme values would

16



2 PROJECT DESCRIPTION

tamper with the average distribution. Hence, the median is to be used to create
the heatmaps. Next up, the AS connections can be used to create graph edges.
These edges can then be turned into a network graph, which also displays the
concentration of the degree of a single node.
The degree speci�cally o�ers additional value for other visualizations. To ex-
plain this, metrics can be taken from the above referenced paper[28].
The degree distribution depicts the frequency of a node degree in the complete
network and can be plotted with the equation,

P (d) =
1

|V |
∑

iεV/d(i)=d

1,

with d(i) as a function that gives the degree of vertex i and |V | as the number
of nodes in a network.
Next, the clustering coe�cient describes the percentage of interconnected neigh-
bors of a node, with,

cci =
2nLINKS

d(i) ∗ (d(i)− 1)
,

where nLINKS is the number of links between neighbors of node i. It is used to
express the average clustering coe�cient per degree, as,

Cnn(d) =
1

nd

∑
∀i/d(i)=d

cci,

where nd = |V/d(v) = d| is the number of nodes in the network with degree d.
Finally, the average neighbor degree displays the average degree of neighbors of
any node per degree, with,

Knn(d) =
1

nd

∑
∀i/d(i)=d

1

|V (i)|
∑

∀rεV (i)

|V (r)|,

where V (i) are the neighbors of a node i.

2.2.2 Data Access

An important part of the system is to make the collected and processed data
available for the user, so he can use it to supplement his own studies and cam-
paigns. A simple method to realize this is to implement a download feature for
the data and graphics.
To prevent the user to have direct access to the backend, the downloads are to
be made available over the web server. This means that a user needs to be able
to select his desired content somewhere on the website and initialize a download
afterwards.
While the graphics are all created by the system itself, the same does not apply
for the measurement results. Since the measurement are run by RIPE Atlas,
the results are therefore also their property. As a consequence, to avoid any
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legal issues regarding these topics, the measurements results must not be di-
rectly available over the system. This means that, as a workaround, a script
is to be distributed as a downloadable option, that, when run, downloads the
results over the freely available API of RIPE Atlas. To realize this, the ids of
the desired measurements must be o�ered and communicated to the script.
Concerning the form of the data, it should be available in a format, that allows
for an easy implementation into the program of the user and should not require
a demanding transformation process. Due to its high popularity, wide applica-
tion area and being the already existent format of the API results, JSON is the
desired data format.

2.3 Architecture

2.3.1 Components

Summarizing the above stated requirements, we can conclude the components
needed to implement the monitoring system.
Firstly, a data server is necessary, that can:

• Request data from the platforms RIPE Atlas, CAIDA AS-Rank and CAIDAs
AS-Mapping based on the RouteViews Project

• Schedule Paris traceroute measurements over the RIPE-Atlas API using
the collected data

• Process the data to create multiple, di�erent graphics

• Save the data and results to the database

Further, a database is to be implemented, that stores both the measurement
results and the, processed, data, received from the data server. It must also
o�er the results to the web server in an e�cient way, that does not produce too
long waiting time.
Lastly, a web server is needed, that can:

• Retrieve and display the results from the database

• O�er the results to the user over a download interface

• Con�gure the parameters for scheduling new measurements and initialize
the process on the data server

For a look at all the components and at once, see Figure 4.

2.3.2 Interactions

When talking about the interactions of the components, it becomes clear, that
the data server will need to have several interfaces to interact with external
APIs. This means that the data server will send requests data from the AS-
Rank, RouteViews and RIPE-Atlas APIs to get the most recent AS data, AS
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Figure 4: Component Diagram of the monitoring system, consisting of external
APIs, data server, database and web server

to IP mapping and probe data respectively. The data server will then save the
complete data into the database.
Further interactions from the side of the data server are needed to manage the
measurements. At �rst will ask the web server for the parameters to start the
measurement. These parameters are then used to start the measurement. The
data server will �ll the gaps in the parameters, namely sources and destinations,
by getting the collected data from the database. The complete measurement
request is then send to the RIPE Atlas API by the data server.
After the measurements are completed, the data server will get the results from
the RIPE API and process them. The processed results and graphics are once
again injected into the database. From the database the graphics and results
are then requested by the web server to show the user on the web page.
Figure 5 describes how the internal operations will be carried out in a sequence
diagram.

3 Implementation

To create a functioning system, the requirements and components described in
chapter 2 were divided into di�erent scripts and functions. In this chapter the
implementation and interaction of the di�erent scripts that build the system
will be described brie�y.

3.1 Tool Selection

An important purpose of the monitoring system is, that it is freely usable by any
organization pursuing to research the Latin American Internet infrastructure.
This means that there should not be any con�icts regarding software licenses.

19



3 IMPLEMENTATION

Figure 5: Sequence diagram of the monitoring system
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Hence, only open source software or software licensed in a similar way was used
to implement the system.
Firstly, the programming language for the data server needed to be selected. To
pin down the available options, the requirements needed to be looked at. The
programming language should contain support for:

• RESTful API[39] interaction, to communicate with the external data servers

• Database interaction

• Web development

• Data statistics and numerical handling

• A graph library

It should also be easy to learn and maintain, as the system may be tweaked to
�t the individuals user's needs.
Taking these points into consideration, two languages were investigated more
closely: JavaScript[21] and Python[45]. Both of these very popular languages
o�er a wide array of open source libraries and frameworks to ful�ll the require-
ments. While in total the two are very comparable and �exible, there were two
important points concerning the project. JavaScript has a better performance
than Python, largely accountable to the Chrome V8 engine NodeJS is based
on. However, Python got the advantage as the superior data analytics tool.
As the main focus of the system is to monitor and process large amounts of
measurement data, Python was chosen, due to having the edge in that regard.
This means that moving forward, the other decisions were based on their com-
patibility with Python.
Next, the database software for storing the collected data and processed re-
sults was to be elected. The �rst decision to be made was, whether an SQL or
NoSQL database was to be used[43]. NoSQL systems are designed to archive
large volumes of data of any type and to process them with a high performance.
Compared to SQL databases they are often cheaper and faster. On the other
hand, the advantage of SQL systems are the execution of complex queries and
data integrity. As the focus lies on e�cient archiving of data and graphics of
di�erent types and no overly complicated queries are needed, NoSQL was se-
lected.
Moving forward, open source, NoSQL databases with good Python support were
researched. A closer look was given to MongoDB[19] and Redis[18]. Both are
easy to setup, high performing databases that support a huge variety of data
types. However, Redis requires some knowledge of Lua to use its full function-
ality, which makes it harder to use for the general user. Also, MongoDB o�ers
professional support to its clients, which is why it was selected in the end.
The last important tool to be selected was the web framework. Required was
a Python web framework with MongoDB and REST support. Django[26] and
Flask[22] were the two frameworks considered. Django is a full-stack frame-
work with a vast amount of libraries available. It is very e�cient and features
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things as URL routing, authentication and a template engine. Flask, on the
other hand, is a micro-framework, meaning for production it has be deployed
on a web server. This allows for an integration into an web server, that may
already be present, such as an Apache server. Flask is very �exible, lightweight
and compatible with a lot of outside tools to realize almost any requirement.
Besides the rich documentation, Flask also includes RESTful request dispatch-
ing and default security features, such as protection against injection attacks
and data integrity checks. Even though the initial customization time is higher
compared to Django, these points make Flask more optimal for the project.
All the other tools and libraries used will be elaborated in the following descrip-
tion of the implementation.

3.2 Data Collection

When implementing the process of the data collection, it was important to de-
sign it in an e�cient way. This means, that the existence of redundant data
was to be prevented and the unnecessary operations should be avoided. If a
user were to conduct, for example, lots of small campaigns at the same day a
recurring execution of the initial data collection scripts would be very wasteful.
Therefore, before collecting the AS, probe and RouteViews data over the cor-
responding APIs, a veri�cation needed to be implemented to assert, that the
initial collection is only run once per day. This was achieved by checking the
database for already existent entries for the current date.

3.2.1 Target Selection

To select the measurement targets, they �rst need to be retrieved from the
CAIDA AS-Rank API. Recalling the criteria stated in chapter 2.1.2, requested
is the data of all ASes located in Latin America, run by regional companies.
Unfortunately, the API does not include a �lter with these parameters for Get-
requests. This means that, using the Requests library[27], it has to be iterated
over each of the roughly 90000 available ASes. The given data (see Listing 2) can
be transformed directly into JSON by Requests. We then extract the latitude
and longitude, along with the country parameter, to see if the AS ful�lls our
geographical requirements. ASes that meet the requirements are then inserted
into the database. These build the base of all ASes in Latin America.
Next, to select the actual targets out of the Latin American ASes, they are
�ltered by their cone size. In the data this is represented by the �asns�-�eld in
the �cone�-array. This is done by using a query that returns every entry with an
acceptable cone size and writes them into a pandas DataFrame[32]. Pandas is a
Python library for data structures and data analysis tools, where a DataFrame
is like a table object for data manipulation with integrated indexing.
The leftover ASes then need to be checked for IPv4 and IPv6 support. Since
the data does only contain the number of pre�xes of one AS, but no network
id, it has to be mapped manually, using the RouteViews data. As it can not
be communicated directly with an API for this, the correct URL has to be
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{
"data" : {

" c l i q u e " : " t rue " ,
" source " : " e5e3b9c13678dfc483fb1f819d70883c_ARIN" ,
" org " : {

"name" : " Level  3 Parent ,  LLC" ,
" id " : "LPL−141−ARIN"

} ,
" cone" : {

" p r e f i x e s " : 516117 ,
" addre s s e s " : 1293145968 ,
" asns " : 36019

} ,
" l a t i t u d e " : " 36.0978209554736 " ,
" rank" : "1" ,
" country " : "US" ,
"name" : "LEVEL3" ,
"country_name" : "United Sta t e s " ,
" degree " : {

" pee r s " : 95 ,
" g l o ba l s " : 5178 ,
" s i b l i n g s " : 9 ,
" customers " : 5083 ,
" t r a n s i t s " : 5177

} ,
" l ong i tude " : "−91.335620170744" ,
" id " : "3356"

}
}

Listing 2: Exemplary AS data from CAIDA AS-Rank

23



3 IMPLEMENTATION

185 .115 . 216 . 0/22 34762
185 .115 . 220 . 0/22 34560
185 .115 . 228 . 0/22 15622
185 .115 . 228 . 0/24 15622
185 .115 . 229 . 0/24 15622
185 .115 . 232 . 0/22 204062
185 .115 . 236 . 0/22 204195
185 .115 . 240 . 0/24 42831
185 .115 . 241 . 0/24 42495
185 .115 . 242 . 0/24 202365
185 .115 . 243 . 0/24 51167
185 .115 . 252 . 0/22 16186

Listing 3: Excerpt of an IPASN data �le consisting of IP pre�x, pre�x length
and AS number

accessed �rst, by using the current year and month and to open the right sub-
directory. Then, the most recent document will be grabbed with Requests and
BeautifulSoup[38], a library to extract data out of HTML and XML �les. The
process must be repeated for the other IP protocol.
The extension module pyasn allows fast IP address to AS number lookups by
returning either the AS belonging to an entered IP address or all IP pre�xes
belonging to an entered AS. To work, pyasn requires the AS and pre�x map-
pings in a speci�c format, an IPASN data �le. Hence, the RouteViews data is
transformed into that format. This leaves us with a �le containing IP pre�xes
and their pre�x length and AS number, as seen in Listing 3.
Now, the DataFrame with the ASes can be �ltered for entries with at least one
IPv4 and IPv6 pre�x. As IP pre�xes are no valid targets for a measurement,
a host address of a pre�x needs to be assigned to the AS. Because the intra-
domain network of the AS is of no interest to us, any pre�x and any host address
can be used. To get a valid host address the pre�x and pre�x length are passed
to the hosts-function of the Python library ipaddress[5].
The DataFrame with all valid destinations can now be passed to the measure-
ment creation.

3.2.2 Source Selection

The source selection follows a similar general pattern as the target selection.
Meaning, at �rst we get the probe information from the RIPE API with Re-
quests. A key di�erence here is, that we can already apply �lters for the latitude
and longitude in our URL for the Get-request. This drastically increases the
speed of the data gathering, as we have to iterate over less data to further �lter
in our script. The received data (see Listing 4) is then checked, to see if the
probe is connected to the network and has both an IPv4 and IPv6 interface.
This way, probes that would not respond in both IPv4 and IPv6 measurement
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requests are getting disposed of beforehand. Acceptable datasets are then writ-
ten into a DataFrame.
Now, the AS number of both IP interfaces of the probe is taken from the
DataFrame. It is checked, whether both numbers are belonging to an accept-
able, Latin American AS, by searching for an up to date entry with this number
in the collection of ASes in the database. Probes without results are dropped
from the DataFrame.
Lastly, we will group the data structure by both AS numbers of the probes to
eliminate duplicate entries. Recall, that only one source per AS is needed, as
the intra-domain architecture has no relevance for the project. The �nished
DataFrame is then written into the database.

3.2.3 Measurement Creation

Before starting the measurement creation, the parameters entered by the user
had to be de�ned.
The �rst thing to consider were the user limitations of the RIPE Atlas platform,
described in chapter 2.1.4. Assuming a user has his own limitations in place,
parameters were con�gured for:

• The number of concurrent measurements

• The number of measurements between a single source and target

• The number of sources selected

• The number of targets selected

The second thing was to de�ne, which �elds of the payload of the measurement
request, seen in Listing 1, were to be manipulable by the user. It was decided
for:

• The description

• The protocol (TCP, UPD or ICMP)

• The number of packets

• The �rst hop to be included

• The maximum number of hops

• The Paris traceroute con�guration

• The billing address

As a �nal parameter the API-Key of the user was also passed, to be parsed onto
the request.
Having de�ned the parameters, the program can now use them to create the
measurements. After the source and target selection are done, a script is called
to limit the size of them according to the respective parameter for each. This
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{
" pref ix_v4 " : "190 . 1 2 . 1 60 . 0/19" ,
" s t a tu s " :{

" s i n c e ":"2019−07−22T22 : 1 0 : 2 0Z" ,
" id " : 1 ,
"name" :" Connected"

} ,
" pref ix_v6 " : " 2001 : 4 70 : : / 3 2" ,
" d e s c r i p t i o n " :" Cdlt2 Network Probe " ,
" last_connected " :1563992518 ,
"geometry " :{

" type " :" Point " ,
" coo rd ina t e s " : [

−68.8615 ,
−32.9195

]
} ,
" type " :" Probe " ,
"address_v6 " : " 2001 : 4 70 : da03 : 2 3 : : 3 6 " ,
"address_v4 " : " 190 . 1 2 . 1 88 . 1 75" ,
" total_uptime " :25404868 ,
" country_code " :"AR" ,
" i s_pub l i c " : true ,
" id " :27927 ,
"asn_v4 " :28114 ,
"asn_v6 " :6939 ,
" s ta tus_s ince " :1563833420 ,
" f i r s t_connec t ed " :1538236454 ,
" is_anchor " : f a l s e

}

Listing 4: Excert of the probe information received from the RIPE Atlas API
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is achieved by taking the DataFrames with the valid sources and targets and
returning a sample of the desired size for both.
Following is the repeated execution of the Post-request for IPv4 and IPv6 re-
spectively. One request requires the list of sources, passed parameters for the
payload, as well as the IP address of the target. This means that we need to
create requests equal to the number of targets times the desired number of rep-
etitions between one source and target, given from the user.
There are a number of things to consider when doing this. As the number
of concurrent measurements is limited, the program needs to wait for the cur-
rent batch of measurements to �nish before starting the next one. To avoid
running more repetitions than necessary, as each repetition means additional
waiting time, it has to be asserted that each batch is containing as many mea-
surements as the given limit for concurrent measurements. This becomes a
problem, when considering the desired repetitions between sources and targets
by the user. This means, the process can not simply be repeated that many
times, because the modulo of the number of targets and concurrent measure-
ments might not be 0. Therefore two loops had to be implemented. The �rst
is repeated repetition ∗ numTargets/limitConcurrent times. The second is
nested inside and repeated according to the limit of concurrent measurements.
Due to that, when calling the execution request in the second loop, the index
of the target DataFrame has to be adjusted to consider the repetition. Lastly,
it has to be checked, if there are actual targets left in the DataFrame.
To actually run the Post-request, the payload with the parameters is passed to
a subprocess. Afterwards, the response of the API, containing the measurement
id, is appended to a DataFrame.
After starting one batch of measurements, the program waits for them to �nish.
As the API does communicate when a measurement is �nished, a �x waiting
time was con�gured, after which the measurements are terminated manually.
This is done by sending a Stop-request to the API for each measurement id.
To avoid losing results due to terminating measurements too early, the waiting
time is con�gured for 20 minutes. This value was decided upon by experience.
Before starting the next batch, the measurements results are saved to the
database and the DataFrame with the measurement ids is emptied. For this,
a separate thread is started. It receives the measurements ids to get the data
from the API. Outsourcing this process saves time, as the next batch does not
need to wait for the Get-requests and database writing process to �nish.
For the �ow of the measurement creation, see Figure 6.

3.3 Data Management

A huge advantage of the usage of MongoDB is their document oriented storage.
The data is stored in the format of JSON like documents. The monitoring sys-
tem can use this very e�ciently, as the data it receives from the external APIs
is already delivered in JSON. Thence the all the external data can be inserted
directly into the database, without any additional processing.
Not reducing the data subsequently increases the storage required. Even so,
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Figure 6: Flowchart of the measurement creation, limited by the number of
concurrent measurements
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most of the data is essential for conducting meaningful results and keeping the
other �elds allows us to use the data for other research at any later date. Also,
MongoDB inherently uses the WiredTiger storage engine[10]. An engine that
provides data modi�cation by multiple users at the same time, checkpointing,
compression and more. This further reduces the storage gained by cutting a
small portion of the results compared to the potential usefulness in the future.
Another concern was, how the system generates the association between a mea-
surement campaign and its generated data. Besides the two collections for
GridFS to store the images in, that will get explained in a moment, the system
consists of �ve collections. One each, for:

• (Campaign-)Dates

• Traceroutes

• Probes

• ASes

• Edges

In the dates collection, a entry with the scheduled date for the campaign will get
created, when the initial data collection is started. In all the other collections
each document will obtain an additional �eld with this date, that connects it to
the campaign. As with the time needed for a campaign and limitations, most
likely, in place, it is very unlikely to conduct multiple campaigns that sprout
meaningful results. Thus, the system uses the schedule date instead of the id
of the campaign, as it provides better readability, when reading data from the
other collections. This is subject to change, according to design philosophy.
To avoid duplicate data sets for the probes, ASes and edges collections, the
schedule date �eld for these is an array. When data is to be inserted here, the
program checks, whether an entry for the data is already existent. If yes, the
date gets added to the array. If not, the entry is inserted as normal.
Lastly, the images needed to be handled. To achieve this, GridFS[4] is used.
GridFS is a speci�cation for storing and retrieving larger documents, such as
�les or images. The document is divided into parts, so called chunks. Then
each chunk is stored as a separate document into the chunks collection. At the
same time the metadata of the �le is stored into the �les collection. This way,
every graphic is inserted into the GridFS collections and a reference is passed
to a �eld in the corresponding campaign document. Using this reference the
image can be retrieved and put back together for download or display.

3.4 Presentation

3.4.1 Graphic Creation

To create a network graph and implement the metrics stated in chapter 2.2.1,
edges between the nodes, the ASes, are required.
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Before creating these AS edges from the measurement results, the requirements
needed to be de�ned. To qualify as an edge, there must exist a direct connec-
tion between two ASes. To prove this connection, any two adjacent hops of a
traceroute got to have an IP address belonging to two di�erent ASes.
Implemented, this means, that, for each measurement of the campaign, the
traceroute results get aggregated from the database. To reduce the amount of
times the script has to iterate over the hops, all entries without a result are
dropped. Now, for each traceroute, the number of the hops are compared. If
they are directly adjacent, they get passed to further compare the ASes.
With the help of the lookup-method of pyasn, the IP addresses of the two ad-
jacent hops are replaced with their corresponding AS number. After checking,
whether the two ASes are di�erent ASes and do in fact exist, they get inserted
into the database collection, along with the IP version used for the traceroute.
Next, the edges from the db can be used to create a DataFrame. To create a net-
work graph, the DataFrame can simply be passed to the LaNet-vi software[14].
When con�guring the parameters of the program, some traits of the graph need
to be clari�ed. We can assume, that, if an AS can directly reach another AS,
the same is true for the reverse. Therefore, the graph will be undirected. While
each edge could theoretically be weighed by, for example, the RTT, it would
require additional information to make a profound statement about the connec-
tion between two speci�c ASes, as the RTT may be misleading depending on
the context. Also, to simply visualize the network, no weight is required, which
is why the created graph is unweighted.
To realize the metrics, the Python package NetworkX[24] provides wide reach-
ing functionalities. A graph object can be created by adding the existent edges.
The degree of each given node can be accessed directly over a method that re-
turns a list with the degree of every node.
Examples of the graphs that the system creates can be found in chapter 4.2.2,
Result Quality.
To calculate the degree distribution,

P (d) =
1

|V |
∑

iεV/d(i)=d

1,

the program simply counts the frequency of each degree d in the degree list
obtained from the graph. The pair of degree and degree count is then plotted
(see Figure 17).
The clustering coe�cient,

cci =
2nLINKS

d(i) ∗ (d(i)− 1)
,

is available over passing the graph to a function integrated into NetworkX. To
create the average clustering coe�cient,

Cnn(d) =
1

nd

∑
∀i/d(i)=d

cci,
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the clustering coe�cient of every degree d is divided by the degree count used
for the degree distribution (see Figure 19).
At last, the average neighbor degree,

Knn(d) =
1

nd

∑
∀i/d(i)=d

1

|V (i)|
∑

∀rεV (i)

|V (r)|,

is created by dividing the results of the NetworkX average neighbor degree func-
tion by the degree count (see Figure 18).
The plotting to an image for all these cases is done by using Matplotlib, a
Python 2D plotting library. To produce the �nal product, a bar chart is plotted
and the axes are customized. The x-axis is always the degree. As the bulk of
the results will most likely have a lower degree value and only a few with a very
high value a normal plot of the charts would be very skewed towards the upper
values. Hence, a logarithmic scale is used to counteract this phenomena.
The last graphics to create are the heatmaps. For this purpose, the traceroute
data (see Listing 5) has to be retrieved and processed �rst. The important
information here are the source, destination and RTTs. When looking at the
structure of a normal traceroute result, you can see that, while the source and
destination are easy to locate, the RTTs are embedded in two arrays. This
results in a query, that has to unwind every traceroute twice, before the RTTs
can be accessed and written into a DataFrame for further processing. For every
traceroute of a campaign, the median of the RTTs of the last hop with valid
results is taken. The last hop is taken, so the result is the closest to the actual
destination and therefore the most accurate.
With the help of Pyasn and the AS-data, the IP addresses of the source and
destination are now translated to their respective country code. Following, the
data is grouped by destination and source country and the median of the RTTs
for each country pair is built.
After transforming the DataFrame into a pivot-table a cluster-map is build,
using the on Matplotlib based library Seaborn. The goal of the Euclidean clus-
tering of the data is to increase the readability of the graphic. Clustering will
produce a heatmap with country pairs placed next to each other that have sim-
ilar RTT values.
To further increase the readability, the indexes of the cluster-map are saved to
be used for the heatmap of the other IP version. This will result in two heatmaps
with the same indexes, that can be compared to each other very handily.
The re-indexed pivot tables are now transformed into a heatmap and labeled
accordingly with Seaborn, before getting saved into the database.

3.4.2 Web-Hosting

The basic structure of the implemented web app, created with Flask, exists out
of app routes, forms and HTML templates. The templates are further using the
Bootstrap toolkit[41], a front-end framework, to apply di�erent styles to them
(see Figure 7).
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{
" a f " : 4 ,
"dst_addr " : " 1 4 8 . 2 4 3 . 9 9 . 1 " ,
"dst_name " : " 1 48 . 2 4 3 . 9 9 . 1 " ,
" endtime ":1561477097 ,
" from " : " 2 00 . 5 9 . 1 6 . 6 0 " ,
"fw " :4790 ,
"group_id " :22101633 ,
" l t s " : 277 ,
"msm_id":22101633 ,
"msm_name" :" Traceroute " ,
" par i s_id " : 0 ,
"prb_id " :2928 ,
" proto " :"TCP" ,
" r e s u l t " : [

{"hop " : 1 ,
" r e s u l t " : [

{" from " : " 200 . 5 9 . 1 6 . 3 3 " , " r t t " : 2 . 7 84 , " s i z e " :88 ," t t l " : 64} ,
{" from " : " 200 . 5 9 . 1 6 . 3 3 " , " r t t " : 1 . 8 53 , " s i z e " :88 ," t t l " : 64} ,
{" from " : " 200 . 5 9 . 1 6 . 3 3 " , " r t t " : 1 . 8 42 , " s i z e " :88 ," t t l " :64}

] } ,
{"hop " : 2 ,
" r e s u l t " : [

{" from " : " 186 . 1 7 6 . 7 . 7 3 " , " r t t " : 2 . 7 07 , " s i z e " :28 ," t t l " :253} ,
{" from " : " 186 . 1 7 6 . 7 . 7 3 " , " r t t " : 3 . 0 5 , " s i z e " :28 ," t t l " :253} ,
{" from " : " 186 . 1 7 6 . 7 . 7 3 " , " r t t " : 2 . 0 51 , " s i z e " :28 ," t t l " :253}

] } ] ,
" s i z e " : 48 ,
" src_addr " : " 2 0 0 . 5 9 . 1 6 . 6 0 " ,
" stored_timestamp ":1561477206 ,
" timestamp ":1561476687 ,
" type " :" t r a c e r ou t e "
}

Listing 5: Excerpt of a traceroute result
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Figure 7: Components of the Flask web app and their interactions.
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The app routes de�ne a page of the website by specifying the URL, the meth-
ods, as GET and POST, and a function, which is run, when the page is called.
Inside the function other functions and scripts can be run and the web page can
be put out on the screen by returning HTML code and a form. The website
of the system contains three di�erent pages. Every page has a app route that
renders the output by using its own HTML �le and form.
The index page simply redirects the user to either the page to schedule new
measurements or to the measurement results for a selected page, depending on
his choice. For the results, the user can choose any campaign in the database.
This is done by getting the schedule dates of every campaign from the database.
To achieve this, Pymongo[33], a Python distribution to work with MongoDB,
can be included inside the app con�guration in Flask.
The results page loads every available graphic onto the page. This is done
by requesting the image from the database via GridFS. A combination of the
schedule date and graphic type, e.g. heatmap_v4, is used to assign the images
to the right containers. For better readability, IPv4 and IPv6 versions for each
graphic are placed adjacent. Below the graphics, a download can be requested.
The user can specify, which data he wants to download. To realize this feature
as a single �le download, the program gets the requested data and images from
the database and then transform them into Zip �le. This Zip �le is then re-
turned as a response.
Lastly, there exists a page to schedule new measurements. Here, the user can
specify the di�erent parameters for his measurement campaign. After successful
con�rmation of the parameters, they are passed to the data server over a new
thread. The creation of a new thread is crucial, as the web app would have
to wait for the measurement campaign to �nish, before continuing browsing,
otherwise. Further, the scheduling page saves some parameters as a cookie, so a
user can keep some data, that is unlikely to change, such as his billing address
or API key, for his next campaign.
For implementing the forms, WTForms[44] were used. WTForms o�ers �exi-
bility and validation for HTML forms and is handily integrated into Flask and
the templates. It o�ers multiple �elds for user input, such as integer, select or
text �elds, and includes a validation. With the help of these functionalities, a
�tting �eld for every user input was created. They are restricted to only allow
speci�c values, contain default values and require to pass validation before the
web app will use its data.
The whole Flask web app is deployed to an ApacheWebserver using the mod_wsgi
package[29].
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Figure 8: Screenshot of the participation of requested source probes for a mea-
surement, taken from the RIPE Atlas website. Accesed on 27th July 2019

4 Analysis of the Implementation

4.1 Analysis of the Data Collection and Processing

4.1.1 Performance and Reliability

As the systems needs to communicate with several external APIs, its perfor-
mance and reliability is highly dependent on the availability and communication
with the external platforms.
During all of the system tests, not a single problem with an API being unreach-
able or retrieving results occured. There did exists cases, where single probes
did refuse to participate in a campaign (see Figure 8). Even so, as a non par-
ticipation does not cost any credits and the number of source probes to assign
to a measurement is unlimited, this only slightly hinders the systems, when a
limit for sources is speci�ed.
Concerning the performance, the system was tested on a machine with 8GB
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of RAM and an Intel Core i5-4200M Processor. The load times for on the
website were usually instantaneous. To provide the downloadable data, the sys-
tems needed between one and four seconds, depending on the amount of data
selected. To ensure a stable system, the data is usually iterated over serially.
This resulted in tests without any hardware problems, however the execution
time for some processes was increased as a results of this.
Waiting time is required when creating measurements. As a batch of measure-
ments needs roughly 25 minutes to �nish to reliably yield results and limitations
by RIPE Atlas often requires a campaign to run multiple batches, this waiting
time is to be expected and can not be avoided. As for the performance of the
data processing, the measurement results are written into the database directly
after the measurement is stopped. Since another thread is used to achieve this,
the start of the next measurement is not delayed. As every hop of every tracer-
oute needs to be revisited by the system to create the network edges and data
for the graphics, this part needs the most time outside of the creation. For a
campaign with 50 sources and 1750 targets with 10 packets each, the system on
the test machine needed around four hours to process the data and create the
graphics for both protocols.
Overall the system is stable and delivers reliable results. As at times there
are three to four threads running simultaneously the host machine needs to be
able to handle this workload. While the measurement creation and processing
requires some time the �nished graphics can be accessed immediately, without
any problems.

4.1.2 Data Selection and Measurement Creation

The data selection o�ers various di�erent options. The system selects targets
and sources according to the requirements. Most importantly, it can reliably be
asserted, that the selected targets and sources are active in a network located
in Latin America.
Also, the system o�ers the user a high amount of customization, when setting
up the measurement process. Over the web page (see Figure 9) , the user can
work around his limitations and amount of available credits, by setting:

• The number of sources and targets to participate in the campaign

• The amount of times each source targets a destinations

• The number of packets for each measurement

• The number of concurrent measurements

Furthermore, additional options to adjust the traceroutes are available:

• The protocol

• The �rst hop

• The maximum number of hops
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Figure 9: Screenshot of the measurement creation page and the available options
for the user to manipulate
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• The Paris traceroute con�guration

• The number of packets, again

Lastly, the user can also con�gure options on a more abstract layer, such as:

• The description

• The billing address

• The API-Key

A feature that is not available right now, is to reuse the exact same measure-
ments used in a speci�c campaign in another. However, this could easily be
implemented by adding a �eld that speci�es which probes and ASes were used
in a speci�c campaign into the corresponding collection documents. In consider-
ation of development time, it was refrained from o�ering more choices concerning
the reuse of targets, as the priority of the data is, that it is up to date.
Lastly, the design behind the scheduling has to be examined critically. As of
right now, the system works on the assumption, that the user has his own RIPE
limitations in place and can therefore run a campaign without consideration for
daily restrictions for credit usage. Consequently, the campaign size is limited
by the daily limitations. As a workaround, the system could pause the measure-
ment creation after reaching the limit and continue the process at the next day.
In conclusion, the data selection is reliable and highly �exible, that could be
expanded with further features, if so desired.

4.1.3 Data Quality

Firstly, lets talk about the quality of the probe data. The probe data is complete
and can be �ltered e�ectively and e�ciently to deliver reliably available sources
that contain all the necessary information.
Next, the AS data, as well as the RouteViews data accessed over CAIDA, also,
provide us with all data needed for our purpose. However, a bit more processing
and more intense �ltering is needed here to make it easy to work it.
The high quality of this data, together with the probe data, is essential, as the
system uses this data as the foundation and works on the assumption, that it is
correct.
The best way to analyze the quality of the measurement result data is to take
a look at the results themselves and see what information we can extract from
it. In the following, we will refer to the results seen in Listing 5 and, for a more
clear view and another example data set, Figure 10.
We can see that the probe id and its IP address, as well as the destination address
are available for each traceroute. The addresses can always be converted into
the corresponding AS numbers with Pyasn on demand. The data also contains
entries for the measurement id, a timestamp and the parameters used for the
(Paris) traceroute. Therefore, each traceroute can always be put into context.
When looking at the results of the traceroutes speci�cally, we can see that all
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Figure 10: Screenshot of measurement results, taken from the RIPE Atlas web-
site. Accesed on 27th July 2019
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the information normally included in a traceroute are provided. Further, Paris
traceroute greatly improves routing. For each traceroute almost all packets take
the same path along the network and anomalies are avoided. Unfortunately,
sometimes, some packets are lost along the way and the results may contain
holes. These have to be taken care of, while processing the data and in turn
cause additional workload for the system.
Another thing to notice is, that the last hop usually does not respond. This
happens due to only knowing the network id of an AS when specifying the
destination. Therefore, there is no guarantee a device to respond to the selected
IP address in the network exists. But since the intra-domain network of the AS
is not relevant for the rest of the program and the packets reach a router in the
target AS anyways, this can be ignored.
Another good quality is, that the JSON format, the data arrives in. It does not
require any additional processing or converting to be inserted into the database
or to be used by the other parts of the program.
In conclusion, the data of the measurements is very detailed and delivered in a
advantageous format. Every relevant information can be taken either directly
from the RIPE API data or indirectly by using additional resources, such as the
IP to AS number mapping available. At times, the hops do contain holes in the
responses though, which can not be improved easily.

4.2 Analysis of the Presentation

4.2.1 User Experience

To analyze the user experience, the user interface has to be inspected closely.
As all interaction between the system and the user happens over the web app,
let us take a closer look at the di�erent sites.
Firstly, the index page (Figure 11). It quickly introduces the user to the project
and mainly serves as a bridge between the other two pages. The campaign
results are displayed in a descending timeline, to assure that the most recent
result will always be on top.
The scheduling page (Figure 12) allows the user to customize all measurement
parameters. To reduce user errors and increase security, WTForms �elds and
validators are used to assert that only the correct values in the correct range
can be entered. This means for example that the value for the �eld �Packets�
can not drop below one as that is the minimum number of packets. For most
�elds standard values exist to reduce trivial inputs. The values for the text
�elds are stored in a cookie, so the user does not have to enter reoccurring data,
as his API-Key, a second time. In case a value is missing or an incorrect one is
entered, the page will keep the other values and mark the wrong entries with a
red box and an error message. To help in �lling out the form, hovering over a
�eld shows a description of it. After successfully scheduling measurements the
user is redirected to the index page, so he can view the results. However, as the
campaigns needs some time to process the user has to wait before he can see
his own results. While the campaign is running the user is unable to see the
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Figure 11: Screenshot of the index page of the web app. Taken on the 19th of
August 2019.
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Figure 12: Screenshot of the scheduling page of the web app. Taken on the 19th
of August 2019.

progress of the campaign in the web app.
Lastly, the results page (Figure 13 & 14) displays all the graphics of a campaign.
Each graphic has a headline to explain the �gure. The campaign date can be
changed at the top, so the user does not have to return to the index page, each
time he wants to view di�erent results. It can be exactly selected which data is
to be downloaded and which not. This secures that the user gets only the data
he wants. To avoid ownership issues, the �Download Script� �eld, also saved as
a cookie, further provides the user with a script to download the measurement
data directly from the RIPE Atlas API. An explanation on how to run the script
is included.
On the whole website, every paragraph has a brief explanation, so the user
knows what he has to do or what the data is and how it was created. External
links aid the user if he needs additional information. A navbar at the top of each
page allows the user to freely switch between the pages. As stated in chapter
4.1.1, while the measurement creation needs time to conclude, the interactions
on the web page are without delay.
All in all, the system o�ers a lot of convenient features and information for the
user, is responsive and loads quickly. Due to the limited development time the
design and some additional features to further improve the usability were not
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Figure 13: Screenshot of an excerpt of the results page of the web app. Taken
on the 19th of August 2019.
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Figure 14: Screenshot of the download function of the results page of the web
app. Taken on the 19th of August 2019.
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included though. Especially the current state of a measurement would be very
interesting for the user.

4.2.2 Result Quality

The system successfully creates graphics for the IPv4 and IPv6 network respec-
tively.

Figure 15: The k-core decomposition of the Latin American IPv4 Internet topol-
ogy.

The �rst thing to analyze are the k-core decomposition of the network graphs
(see Figure 15 & 16). The AS-edges created are used to build the graph. On
the left we got a degree indicator and the shell index on the right. We can as-
sociate a shell and degree with each node in the graph. The nodes of the inner
shells are more densely connected and have a higher degree size. This results in
information about the di�erences in number of nodes, their degree, the density
and, to a certain extend, their inter-connectivity between the two architectures,
when comparing the maps. For our test results, a higher number of nodes can
be seen in the IPv4 topology. This comes with more shells and higher degrees
for the nodes as well. Hence, we can deduce, that the smaller number of nodes
in the IPv6 topology hints to a smaller network. While the distribution of nodes
between the shells seems mostly identical, a di�erence can be seen between the
�fth and seventh shell. Here, the IPv4 shows a lesser frequency than the IPv6
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network. However, as no numbers can be given without making the graph less
readable, the supplemental graphics have to be used to con�rm this suspicion.
Overall, the decomposition graphs o�er a �rst overview of the network and al-
lows for some assumptions that need additional data to verify.

Figure 16: The k-core decomposition of the Latin American IPv6 Internet topol-
ogy.

Next, the degree distribution displays the count of each given distribution with
a logarithmic scale (see Figure 17). On the x-axis the degree of a node is shown,
while the count of each occurring degree is displayed on the y-axis. The use of
a logarithmic scale increases the readability of the graph, as it would otherwise
be very skewed towards the higher degree values. However, single values, as the
one node with a degree of 705, seen in Figure 15, are barely visible due to this.
Comparing the count numbers, can once again con�rm, that the IPv4 network
contains more nodes than the IPv4 network. Noticeable is, that the IPv6 graph
shows a slightly higher count for the degree sizes between �ve and eight than
the IPv4 graph. This could explain the apparent di�erence from the k-core
distributions. We can also notice that the IPv4 architecture has a higher count
for larger degree sizes. This is suggesting, that the IPv4 network has a number
of larger ASes that are connecting the smaller ASes with each other, while the
IPv6 network has more ASes in the middle shells to to compensate for the lack
of large, densely connected ASes in the most inner shells.
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Figure 17: Graph of the degree distribution of ASes in the Latin American
Internet topology
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Figure 18: Graph of the average neighbor degree of ASes in the Latin American
Internet topology
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The average neighbor degree diagram, provides us, again, with the degree size
on the x-axis and the average neighbor degree on the y-axis (see Figure 18). The
graphs show, that the average neighbor degree gets lower with a higher degree
size. This is very reasonable, as nodes in the center will be connected to many
outer nodes with a low degree, therefore reducing the average. Striking are the
di�erent peaks of the graphs. While the IPv4 degrees with a size of one have
the highest average neighbor degree, the IPv6 degrees with a size between three
and eight show a higher average in comparison. We can conclude, that in the
IPv4 network more nodes with a low degree are connected directly to the inner
shells. Meanwhile, in IPv6 topology more lower degree nodes are connected to
nodes in the middle, which explains the lower number for the degree size one,
as well as the higher average for the sizes between three and eight.
In the graph of the clustering coe�cient on the y-axis, versus the degree size on
the x-axis (see Figure 19), we can see that there is no value for the degree value
one. This has to be the case, as a node with only one neighbor can not have
connected neighbors. Further, the clustering coe�cient mostly gets smaller, the
higher the degree. As these nodes connect many isolated nodes, this is, again,
to be expected. Interestingly, both graphs are showing some outliers to the
general tendency of a decreasing clustering coe�cient at several points. This
shows that, the relatively small sample size can produce and display unexpected
results.
Lastly, the heatmaps are to be analyzed (see Figure 20 & 21). They display the
median of the RTTs of every traceroute from a source country, on the y-axis,
to a target country on the x-axis. It is very easy, to identify di�erent values,
due to the high contrast in colors. For ordering the countries on the x- and
y-axis the Hierarchical Clustering Algorithm[35] is applied onto the results of
the IPv4 measurements. The same order is used for the IPv6 �gure. This way
correlated results are displayed close to each other and country pairs of similar
value are grouped together. Further, the identical layout lets us compare the
di�erences between the architecture directly. Together, this allows us to quickly
get an impression about the quality of the connection between two countries
and locate weak links and di�erences, as the high IPv6 results from Costa Rica
to any country or the lack of results when trying to reach Guadeloupe over the
IPv6 network. In total, we can see that the IPv4 architecture still has better
RTTs on average. But, some countries, such as Uruguay for example, already
get better results for IPv6 traceroutes and seem to be developing their IPv6
network well.
In conclusion, the di�erent graphics display their respective metric or statistic
and have a layout with great readability. The headlines of the graphics provide
context concerning the timeline. If we combine the information from each, we
can come to various assumptions that can be substantiated. It has to be noted
though, that, as the number of results to be included in a single graphic is
very high, single values can be hard to identify. The results display a vast
overview over the whole networks and allow for comparisons between them, but
to investigate the details, the data itself has to be consulted. As this can be done
with the download feature, the level of the displayed results ful�lls its purpose.
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Figure 19: Graph of the clustering coe�cient versus degree for the ASes in the
Latin American Internet topology
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Figure 20: Heatmap of the median Round Trip Time between sources and
targets in Latin American IPv4 Internet topology by country. Black results had
no data to analyze.
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Figure 21: Heatmap of the median Round Trip Time between sources and
targets in Latin American IPv6 Internet topology by country. White results
had no data to analyze.

5 Conclusion

5.1 Summary

Looking back, a working monitoring system for the Internet topology in Latin
America was created.
By interacting with platforms that collect data about the Internet themselves,
as RIPE Atlas, CAIDA and RouteViews, the system collects data. With this
data sources and targets for a measurement campaign are determined and IP
addresses get mapped to AS numbers.
Based on the sources, targets and parameters, entered by the user, campaigns

52



5 CONCLUSION

are scheduled over RIPE Atlas and archived into a database. The results are
processed to create various graphics. While the system provides the user with
information about the network graph, degree distribution, average neighbor de-
gree, clustering coe�cient and RTTs between countries, the data can also be
acquired over a download feature and used by the user for his own purposes and
analysis.
Another important factor are the di�erences between the IPv4 and IPv6 topol-
ogy, displayed by the program. It allows us to see, that there are still signi�cant
di�erences in the state of both architectures in Latin America, that are worth
to be monitored closely.
However, the full capacities of the monitoring system could not be reached, as
it has to work with consideration for the limitations set by RIPE Atlas to the
API user. These restrictions increase the time the system needs to complete
measurement campaigns by a great margin and force the program design to �t
its characteristics. This may lead to hindrances, depending on the desired use
cases, as not all options could be included in the given development time.
Taking all this into account, the system can certainly be a great asset in helping
organizations to continually monitor and analyze the state and development of
the Internet topology in Latin America and the di�erences between the IPv4
and IPv6 architecture.

5.2 Outlook

The software and libraries used to implement the monitoring system o�er a
great array of di�erent libraries, packages and extensions to add to the pro-
gram. On this way it could be advanced into di�erent directions. Examples
include a realization of multiple users with own logins and preferences on the
same server, entering requests for the database directly over the website and
combining results from multiple measurement campaigns.
The biggest challenge, when evolving the system will be the scheduling of the
measurements. As the platform to conduct the measurements is the property of
RIPE and the limitations and credit costs can be very restrictive, a good com-
munication with RIPE will be crucial in further exploring the Latin American
Internet topology. However, the scripts could be re-purposed to use an other or
own platform with little expense.
Also, the opportunities to work with the data collected are far from exhausted.
There is a lot of additional information that can still be extracted from the
data sets. Examples include an analyzing and visualizing the RTTs between
two ASes instead of countries, the in�uence of di�erent parameters, such as the
protocol and usage of Paris traceroute, on the routing and getting information
about the intra-domain network of ASes by further examining the hops of the
traceroutes.
As the landscape of the Internet topology in Latin America will continue to
evolve and the IPv6 network will continue to expand, a lot of opportunities to
use and further develop the created monitoring system will arise.
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