
Towards evolving communities:
detection and stability

Detection: V. Blondel, R. Lambiotte, E. Lefebvre

Stability: T. Aynaud

Jean-loup.guillaume@lip6.fr

09/03/2007 Community detection: an overviewCircle of friends on boards.ie
© boards.ie

What is a community?

In a network: a set of nodes which share something

persons with a similar interest (family members, friends)

web pages with a similar content

blogs on a same topic, etc.

What is a community?

In a network: a set of nodes which share something

persons with a similar interest (family members, friends)

web pages with a similar content

blogs on a same topic, etc.

Relation with the structure of the network?
Densely connected groups of nodes

(Automatic) community detection

Applications

understand the structure of these networks

detect communities of special interest:

Web pages, similar files on P2P networks, …

visualization

improve search engines, P2P networks, routing techniques…

Challenges

unknown number of communities of various sizes

scalability: web ~ billions nodes

overlapping communities

evolving communities

Outline

Static community detection

Louvain algorithm

experimental results

Dynamic communities

past studies

stability issues

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
Each node belongs to
an atomic community

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]

An example
Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
insert 3 in c[0]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
insert 3 in c[0]
insert 4 in c[1]
insert 5 in c[7]
insert 6 in c[11]
insert 7 in c[5]
insert 8 in c[15]
insert 9 in c[12]
insert 10 in c[13]
insert 11 in c[10,13]
insert 12 in c[9]
insert 13 in c[10,11]
insert 14 in c[9,12]
insert 15 in c[8]

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 2

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
Pass 1 – Iteration 2
insert 0 in c[4]
…

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example
After 4 iterations, no
more changes

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example

14 4

1

4

1

216

1

3

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

An example

26 24
3

14 4

1

4

1

216

1

3

An example

Gives a tree (not a binary one):

each level is meaningful

intermediary levels are less subject to resolution problems

0

5
4

2

1 3

6

7

11

8

1310

15

9

12

14

Modularity

The most widely accepted measure of quality:

Contribution of an isolated node is:

 









C

C
C

m

a
e

m
Q

22

1 2

Links inside C

Links with an extremity in C

2

2
)(










m

k
iQ i

Degree of i

Moving a node

An isolated node „i‟ can be moved to C with a gain:

Only related to i and C

Complexity linear with degree of i

















































 





222

,

22222
),(

m

k

m

a

m

e

m

ka

m

ke
iCQ iCCiCCiC

Links from i to C

Experimental results (time)

Karate Arxiv Internet
Web

nd.edu

Belgian

Phone Calls

Web

UK-2005

Web

Webbase01

n=34/m=77 9k/24k 70k/351k 325k/1M 2.5M/6.3M 39M / 783M 118M/1B

Newman

Girvan

Clauset Moore

0s 3.6s 799s 5034s

Pons

Latapy

0s 3.3s 575s 6666s

Wakita

Tsurumi

(expected)

0s 0s 8s 52s 1279s (3days)

Our approach

0s 0s <1s <1s 47s 252s 469s

3 passes 5 passes 5 passes 5 passes 5 passes 4 passes 5 passes

Experimental results (Q)

Karate Arxiv Internet
Web

nd.edu

Belgian

Phone Calls

Web

UK-2005

Web

Webbase01

n=34/m=77 9k/24k 70k/351k 325k/1M 2.5M/6.3M 39M / 783M 118M/1B

Newman

Girvan

Clauset Moore

0s

0.38

3.6s

0.772

799s

0.692

5034s

0.927

Pons

Latapy

0s

0.42

3.3s

0.757

575s

0.729

6666s

0.895

Wakita

Tsurumi

(expected)

0s 0s 8s 52s 1279s (3days)

Our approach

0s

0.42

0s

0.813

<1s

0.781

<1s

0.935

47s

0.769

252s

0.979

469s

0.984

3 passes 5 passes 5 passes 5 passes 5 passes 4 passes 5 passes

Evolving communities

Louvain is fine for static networks, but most are evolving

new pages/sites appear on the web, people begin new relationship,
posts are created on blogs, etc.

Basic idea

succession of static networks + efficient techniques for static
networks = compute communities at each time step

Evolving communities

Louvain is fine for static networks, but most are evolving

new pages/sites appear on the web, people begin new relationship,
posts are created on blogs, etc.

Basic idea

succession of static networks + efficient techniques for static
networks = compute communities at each time step

T

Evolving communities

Louvain is fine for static networks, but most are evolving

new pages/sites appear on the web, people begin new relationship,
posts are created on blogs, etc.

Basic idea

succession of static networks + efficient techniques for static
networks = compute communities at each time step

T T+1

Evolving communities

Louvain is fine for static networks, but most are evolving

new pages/sites appear on the web, people begin new relationship,
posts are created on blogs, etc.

Basic idea

succession of static networks + efficient techniques for static
networks = compute communities at each time step

T T+1
How to track communities over time?

Outline

Static community detection

Louvain algorithm

experimental results

Dynamic communities

past studies

stability issues

Past studies

Find a definition of community which facilitates the matching

overlapping cliques

Palla, Barabasi and Vicsek, Nature 2007

Past studies

Find a definition of community which allows to track them

Only focus on very stable communities

make random perturbations of the graph (remove 5% of nodes)

search for communities not affected by the perturbation

these communities should be less affected by real modifications

Hopcroft, Khan, Kulis and Selman, PNAS 2004

Past studies

Find a definition of community which allows to track them

Only focus on very stable communities

Temporal network

build a network with temporal links between static networks

use any fast algorithm for static networks

gives temporal communities

Jdidia, Robardet and Fleury, ICDIM 2007

Past studies

Find a definition of community which allows to track them

Only focus on very stable communities

Temporal network

Modify the quality function

Quality = function(Qsnapshot , Qdynamic)

Qdynamic: ensure stability or good partitioning at different time steps

D. Chakrabarti, R. Kumar, and A. Tomkins, SIGKDD 2006.

Y. Lin et al, Transactions on Knowledge Discovery from Data

Our approach

Non deterministic algorithms are not stable at all

10000 experiments on the same graph

Look at pairs of nodes

Our approach

Non deterministic algorithms are not stable at all

Use simple, well known, community detection algorithms

Newman‟s fast: greedy optimization based on modularity

Walktrap: greedy optimization based on random walks

Louvain algorithm

Simulate a basic evolution

removal of random nodes from a network one by one

computation of communities after each removal

Evaluation – two parameters

Quality of the decomposition at each time step (modularity)

Stability of the algorithm

minimal number of transformation to change one part in the other

easier to interpret than mutual information

Requires 2 moves : C and F

1 3 2

Requires 6 moves : C, D, E, F, G, H

1 0 1

Quality / Stability

Louvain and Newman's are really unstable (9K nodes)

Walktrap is more stable but with lower quality

Before modification: classical computation

Stabilizing Louvain

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

Before modification: classical computation

After modification: initialize with the previous communities

launch the algorithm again

Stabilizing Louvain

0

54

2

1

3

6

7

11

8

1310

15
9

12

14

0

4

2

1

3

6

7

11

8

1310

15
9

12

14

Quality / Stability

Tradeoff:

loss of quality but still better than walktrap for a long period

much more stable, with only few pikes

A real network

Blog network:

hyperlinks between a set of blogs, measured everyday during 4 months

real (more complex) evolution, but only growing

A real network (2)

Results are very similar

still events but more stable compared to the number of modifications

Louvain stabilized performs well

A real network (2)

Results are very similar

still events but more stable compared to the number of modifications

Louvain stabilized performs well

In all cases (real/synthetic), events appear

due to the algorithm (still not stable/cannot be stabilized)?
specific nodes/topologies which creates the pikes?

Understanding events

For each node of the network

compute communities before and after removal (stabilized Louvain)

number of modifications between before and after

find topological properties which could explain the changes

Number of modifications

Distribution is very heterogeneous

log-log with exponent 2 (sorry for that)

number of connected
components

distance

Which nodes are moving?

Close to the removed node in general

Few connected component involved

Betweeness centrality

Left: global, right: local

Local parameters are “more” relevant

Betweeness centrality

Left: global, right: local

Local parameters are “more” relevant

We found nothing more relevant than local centrality

Conclusion / perspectives

Classic algorithms cannot be used directly to compute
dynamic communities

Louvain stabilized is much more stable than other algorithms

are there too much constraints?

loss of quality: restart if the quality decreases too much?

Locality is important

moving nodes are near removed nodes

impact is generally higher with local properties than global ones

Study more complex evolutions / real networks / algorithms

