Characteristics of the Dynamic of Mobile Networks

P. Borgnat, E. Fleury, J.-L. Guillaume, C. Robardet, A. Scherrer http://perso.ens-lyon.fr/eric.fleury/ http://www.ens-lyon.fr/LIP/D-NET/ mailto://Eric.Fleury@inria.fr

ENS Lyon/LIP - INRIA/D-NET

Workshop: Dynamical Complex Systems December 2009, Buenos Aires, Argentina http://cnet.fi.uba.ar/wdcs/

Outline

MOSAR Project

Project overview

Dynamic Network Characterization

- Motivation
- Statistical analysis of snapshots of graphs
- Towards a global analysis of the dynamics
- Modeling of the dynamics

• Conclusion

Outline

MOSAR Project Project overview

• Dynamic Network Characterization

- Motivation
- Statistical analysis of snapshots of graphs
- Towards a global analysis of the dynamics
- Modeling of the dynamics
- Conclusion

Deployment of a large-scale dynamic networks

Control of antimicrobial resistance of bacteria responsible for major and emerging nosocomial infections.

MOSAR Experiment

- Medical / staff / Patients (500 people)
- Individual antibiotic use;
- Characterization of the isolates bacteria and their epidemicity;
- 7/24 during 6 month long period

Document contact frequencies

- Associate 1 sensor with each actor
- monitor the dynamic (inter & intra contact)

Overview

Overview

Multi modal / multi time scale

038

03

06 •16

040

E. Fleury

Outline

- MOSAR Project
 - Project overview

Dynamic Network Characterization

- Motivation
- Statistical analysis of snapshots of graphs
- Towards a global analysis of the dynamics
- Modeling of the dynamics

Conclusion

Objectives

MOSAR project

- Better understand the intrinsic characteristics / properties of dynamic networks
- Model / analyze interaction between node/users
- Describe accurately the dynamics

Two central questions:

- Obtaining random models that reproduce "these" properties
- How do their functionalities constrain the structures of real network?

Objectives

MOSAR project

- Better understand the intrinsic characteristics / properties of dynamic networks
- Model / analyze interaction between node/users
- Describe accurately the dynamics

Two central questions:

- Obtaining random models that reproduce "these" properties
- ► How do their functionalities constrain the structures of real network?

Objectives

MOSAR project

- Better understand the intrinsic characteristics / properties of dynamic networks
- Model / analyze interaction between node/users
- Describe accurately the dynamics

Two central questions:

- Obtaining random models that reproduce "these" properties
- How do their functionalities constrain the structures of real network?

Preliminary data¹

Mosar experiment: May 2009 - Nov 2009.

"Toy" traces are now available

- 41 nodes, 3 days (254 151 sec), every 120sec
- 820 possible links,

"[...] inter contact time distribution can be compared to the one of power law [...]"

^A. Chaintreau and J. Crowcroft and C. Diot and R. Gass and P. Hui and J. Scott, *Impact of Human Mobility on the Design of Opportunistic Forwarding Algorithms*, INFOCOM 2006

E. Fleury

Methodology

Descriptive: Standard graph properties

- 1 as a function of time to to provide an empirical statistical characterization of the dynamics.
- 2 temporal evolution of the snapshots
- statistical signal processing

Analysis: global indicators

connected components, triangles, and communities

Model

 We propose models to perform random dynamic networks simulations.

Standard graph properties

Snapshots $G_t = (V^0, E_t)$

- Active links: $E(t) = |E_t|$
- ► Connected vertcices: $V(t) = |\{u \in V^0, d_{G_t}(u) > 0\}|$
- Average degree of connected vertices is $D(t) = \sum_{u \in V^0} d_{G_t}(u) / V(t)$
- Number of connected components (maximal subgraph such as every node of the subgraph is connected to each another node): N_c(t) = |C_{Gt}|

• Number of triangles:
$$T(t) = |T_{G_t}|$$

	IMOTE			
Property		Mean	Std. Dev.	Corr.
				Time (s)
#Active links	E(t)	21.9	12.4	5200
#Connected vertices	V(t)	19.9	4.7	7400
Avg degree	D(t)	2.1	0.8	3600
#CC	$N_c(t)$	4.8	2.1	5600
#Triangles	T(t)	6.9	8.30	4700

Probability distribution

- time bin of 1s << period.</p>
- PDF obtained are not heavy tailed
- variability is not very large (stdv is a good measurement of the variability)

E. Fleury

Network is sparse

- less than 10% of active links among the 820 possible links
- at no time the network is a single connected component.
- many nodes remain isolated during long times (around 50% on average for daytime and more than 90% for nighttime).

differential sequence: DS[k] = D[k + 1] - D[k]

- log-log representation of the covariance in the wavelet domain^a
- S_i is roughly the average of the wavelet coef. at scale j
- Hurts exponent is close to the special value 0.5.
- ▶ no long range → Independent Identically Distributed (IID)

Large number of triangles

- $\mathbb{E}(T(G(p, n))) = \binom{N}{3} 3! p^3 \& \mathbb{E}(E(G(p, n))) = p \frac{N(N-1)}{2}$
- ▶ When there is k links, $\mathbb{E}(T(G(n,k))) \sim \frac{8k^3(N-2)}{N^2(N-1)^2}$
- ▶ 70 links (max) → 40(60)

▶ 22 links (avg)
$$\longrightarrow 1(7)$$

Dynamical characteristics

Correlation times

- temporal evolution (X(t): univariate time-series)
- ► The autocorrelation function of *X*(*t*):

$$C_X(\tau) = \langle X(t+\tau)X(t) \rangle_t - (\langle X(t) \rangle_t)^2$$

► correlation time: first time where the function C_X(τ) goes to zero

notes

- correlation times of *E*, *V* and N_c are rather large: ~ 1h15.
- D and T have comparable correlation times.
- This suggests that these properties evolve under a common cause.

Dynamical characteristics (cont)

Mean : 140; $\alpha = 1.66$

Mean : 3680; $\alpha = 0.60$

Contact and inter-contact durations

$$\blacktriangleright P[X > x] \underset{x \to \infty}{\sim} cx^{-\alpha}$$

- $\alpha > 2$: finite mean/variance; $\alpha < 2$, infinite variance (*heavy tailed*).
- $\alpha < 1$, infinite mean/variance.

E. Fleury

Dynamics of links creation and deletion

► $E_{\oplus}(t) = |\{e \in E_t, e \notin E_{t-1}\}|$, the number of links added at time *t*

E. Fleury

Dynamics of links creation and deletion (cont)

► $E_{\ominus}(t) = |\{e \in E_{t-1}, e \notin E_t\}|$, the number of links removed at time *t*

	ΙΜΟΤΕ			
Property Me		Mean	Std. Dev.	Corr. Time (s)
Edge creation	$E_{\oplus}(t)$	0.15	0.55	$680 \sim 12 min$
Edge delation	$E_{\ominus}(t)$	0.15	0.55	$680\sim 12 min$

Cross-correlations

- Strong influence E(t) over V(t);
- $N_c(t)$ related to E(t)
- Less related: $N_c(t)$ and V(t)
- $E_{\oplus}(t)$ and $E_{\ominus}(t)$: mostly uncorrelated

	E(t)	V(t)	$N_c(t)$	D(t)	T(t)	$E_{\oplus}(t)$	$E_{\ominus}(t)$
E(t)	1	0.85	-0.56	0.95	0.90	0.19	0.15
V(t)	0.85	1	-0.20	0.70	0.66	0.15	0.11
$N_c(t)$	-0.56	-0.20	1	-0.70	-0.41	-0.16	-0.15
D(t)	0.95	0.69	-0.69	1	0.86	0.19	0.15
T(t)	0.90	0.66	-0.41	0.86	1	0.15	0.11
$E_{\oplus}(t)$	0.19	0.15	-0.16	0.20	0.15	1	0.03
$E_{\ominus}(t)$	0.15	0.11	-0.15	0.16	0.10	0.03	1

Joint distributions

variation of the # links is not constant over the # vertices

Link correlations

Most pairs of links have a very low correlation coefficient.

Markovian evolution

- Correlation time link creation/deletion is small
- Independent from the evolution of other graph properties
- 3 Links are independents

Link correlations

Most pairs of links have a very low correlation coefficient.

Markovian evolution

- 1 Correlation time link creation/deletion is small
- Independent from the evolution of other graph properties
- 3 Links are independents

Towards a global analysis of the dynamics

global properties

- not directly interpretable in the sequence of static graphs
- stability of connected components
- communities embedded in the network
- proportion of creation of triangles

Towards a global analysis of the dynamics

global properties

- not directly interpretable in the sequence of static graphs
- stability of connected components
- communities embedded in the network
- proportion of creation of triangles

Triangles in the graphs

	P _{+/tri+}	$P_{+/tri=}$	$f_{+/tri+}$	$f_{+/tri=}$
Ιμοτε	44 %	56 %	6 %	94 %
RANDOM	10 %	90 %	5 %	95 %

links / triangles

- $P_{+/tri+}$: link creation \rightarrow triangle
- $f_{+/tri+}$: innactive link \rightarrow triangle
- 40% of link creations increase the number of triangles
- proportion of inactive links that would create a triangle is very low
- More potential links doesn not imply higher P_{+/tri+}

Modeling of the dynamics

Simulation algorithm

- transition model with Markovian property
- links e are independent
- state of the network
- links *e* changes with $P_{tr}(e, G_t)$
- duration \(\tau(e)\) since the link \(e \) has last changed its status

Ingredients

- contact / inter contact duration distribution
- elaborated graph properties $(E(t), V(t), N_C(t), D(t))$
- dynamical information (triangles)

Modeling of the dynamics

```
Input: Simulation time
Output: Random Dynamic Graph
foreach Simulation Time Step t do
   foreach link e do
       P_{tr}(e, G_t) = TransitionProbability(e) given the state G_t;
       p_r = \text{Uniform}(0,1);
       if (p_r \leq P_{tr}(e)) then
          ChangeState(e);
       end
   end
end
```

Ingredients I

Contact distribution

- heavy-tailed distributions for contact P_{ON} and inter-contact P_{OFF} durations
- P₊(τ): probability that one link that was OFF since τ (τ ≥ 1) is activated

•
$$P_{ON}(\tau) = P_{-}(\tau) \times \prod_{i=1}^{\tau-1} (1 - P_{-}(i))$$

$$P_{-}(\tau) = \frac{P_{ON}(\tau)}{\prod_{i=1}^{\tau-1} (1 - P_{-}(i))}, \quad \tau \ge 2, \quad P_{-}(1) = P_{ON}(1)$$
(1)

$$P_{+}(\tau) = \frac{P_{OFF}(t)}{\prod_{i=1}^{\tau-1} (1 - P_{+}(i))}, \quad \tau \ge 2, \quad P_{+}(1) = P_{OFF}(1)$$
(2)

Ingredients II

Imposed graph property distribution

- Rejection Sampling based on a Metropolis-Hastings algorithm
- ▶ new state $G'_t = \{G_t + S_e(t) \text{ changed}\}$, is accepted with probability $P_{RS}(G_t, G'_t) = \min\left(1, \frac{F(x(G'_t))}{F(x(G_t))}\right)$
- F is the target PDF for the graph
- ► The total probability of transition of link *e* is then: $P_{tr}(e, G_t) = P_{-/+}(\tau(e)) \cdot P_{RS}(G_t, G'_t).$

Ingredients III

Imposed dynamics of triangles

- reproduce the correct dynamical transition process concerning triangles
- do not want to change the mean probabilities of transition
- The weighted probabilities are then:

$$egin{aligned} \mathcal{P}_{tr}(m{e},G_t) = \left\{ egin{aligned} \mathcal{P}_+(au(m{e}))rac{\mathcal{P}_{+/tri=}}{f_{+/tri=}} \ \mathcal{P}_+(au(m{e}))rac{\mathcal{P}_{+/tri+}}{f_{+/tri+}} \end{aligned}
ight. \end{aligned}$$

for link creation without new triangle,

for link creation with a new triangle.

Simulation results

Investigated models

- A: imposed empirical contact and inter-contact duration distribution only.
- B: imposed distributions of contact / inter-contact durations , and of number of connected components.
- C: distributions imposed contact / inter-contact durations and of number of connected vertices.

 $-- \text{ Imote / o Model } \mathcal{A} \, / * \, \text{Model } \mathcal{B} \, / + \, \text{Model } \mathcal{C}$

-- Imote / o Model \mathcal{A} / * Model \mathcal{B} / + Model \mathcal{C}

\mathcal{A} : sole contact and inter-contact duration fails

- the number of connected vertices is strongly over-estimated
- the number of connected components is under-estimated

$\mathcal{A}, \mathcal{B} \text{ and } \mathcal{C} \text{ fail!}$

- The density of the connected components (the groups) is underestimated
- Links are spread uniformly in the graph

Weighted models

- does not have an impact on the contact and inter-contact duration distributions
- the density of connected components is comparable to the experimental data

Density of frequent connected components

- (
 τ = 7 and
 σ = 6
)
- classical models fail to create dense frequent connected components
- the number of frequent connected subgraphs is larger in the simulated data than in the original

Outline

- MOSAR Project
 - Project overview
- Dynamic Network Characterization
 - Motivation
 - Statistical analysis of snapshots of graphs
 - Towards a global analysis of the dynamics
 - Modeling of the dynamics

• Conclusion

Conclusion

contributions

- rigorous / coherent set of properties (basic / advanced)
- probability distribution of contacts and inter contacts is only one parameter
- global analyses to characterize the dynamics of the graph as a whole:
 - correlation between links
 - stability of the connected components
 - number of triangles
 - evolution of communities inside the interaction networks.
- simple / accurate models that generate random interaction graphs with satisfactory temporal properties.

Conclusion

Futur / On going works

- Introduce non-stationarity (piecewise stationary model)
- Dynamic community computation
- Overlapping community detection
- Trajectories of individuals as a signature
- Large in situ test beds to be deployed...

Some references

Dynamic networks

- Antoine Scherrer, Pierre Borgnat, Éric Fleury, Jean-Loup Guillaume and Céline Robardet, *Description and simulation of dynamic mobility networks*, in Computer Network 2008.
- Pierre Borgnat, Éric Fleury, Jean-Loup Guillaume, Céline Robardet and Antoine Scherrer, Analysis of Dynamic Sensor Networks: Power Law Then What?, in Comsware 2007.