The Role of Topology in collective behavior of excitable networks driven by noise

Pablo Balenzuela Departamento de Física, FCEyN, UBA IFIBA – CONICET



### Workshop on Dynamic Networks 2013



### **Co-authors**

Jordi García–Ojalvo

Department of Experimental & Health Science, Universitat Pompeu Fabra, Barcelona, Spain.

### Pau Rué

Department of Genetics, Cambridge University, UK.

### • Stefano Boccaletti

CNR-Istituto dei Sistemi Complessi, Italy

## Warning

- In this work we don't analyze networks.
- We analyze what happen when certain dynamical units are connected with different networks topologies
- Input: Excitable dynamics + noise + complex networks
- Output: Collective behaviors such as Synchronization & Array Enhance Coherence Resonance.



## Summary

- Stochastic Coherence & Synchronization in complex networks
- The model: Dynamical units & connectivity networks
- ✓ Results
- Conclusions



### **Stochastic Coherence**



### Coupling enhances Stochastic Coherence



- $\checkmark$  Resonance occurs when noise makes the neuron fires after each refractory period.
- ✓ Coupling enhances SC:
- $\checkmark$  Firing of a neighbor reminds a given element to fire at the "correct time"

### Previous Results

- B. Hu & C. Zhou, PRE (2000) → Array Enhance Stochastic Coherence (AESC) (NN Ring of FN Neurons with Diffusive Coupling and Gaussian noise)
- C. Zhou, J. Kurths and B. Hu, PRL (2001) → Heterogeneity & Independent Noise Favours AESC (NN Ring of FN Neurons with Diffusive Coupling and Gausian Noise)
- O. Kwon and H.T Moon, Phys.Lett A (2002) → SC persist in SW Networks (HH neurons on WS networks)

## Synchronization affects AESC

 $\checkmark$  Coupling favours Stochastic Coherence because dynamical units are not fully synchronized

✓ If  $x_i(t) = x_s(t), \forall i = 1, N, \forall t \rightarrow CV(N \text{ exc. elem}) = CV(I \text{ exc. elem})$ 



Synchronization also affects other collective properties driven by noise

- Full synchronization has a negative effect in Global Amplification (Acebron et al, 2007).
- Diffusive coupling (DC) vs Chemical Synapse (ChS, only couples during spiking):
  - ChS shows better AECR than DC, but synchro is worst (Balenzuela & Ojalvo, 2005).
- Stochastic Resonance (SR) in weakly paced SFN is weaker when coupling increases (M. Perc 2008).

### Synchronization on Complex Networks

### • M. Barahona & L.M. Pecora, PRL (2002)

Synchronization in Watts-Strogatz Small World networks via Master Stability Function Analysis.

- The addition of shortcuts produces synchronizability more efficiently than deterministic & random graph
- $\checkmark\,$  However, the SW property does not guaranty synchronization



Increasingly random connectivity

### • T. Nishikawa, A.E.Motter et al, PRL (2003)

They study the role of heterogeneity in synchronization via Master Stability Function Analysis in a semirandom model of SF networks  $[P(k) \sim k^{-\gamma}]$ .

### $\checkmark$ The more heterogeneus $\rightarrow$ the less synchronizable,

### Paradox of Heterogeneity

✓ <u>Heuristic:</u>

Hubs tend to be overloaded by the traffic of communications. Networks with few links concentrating lot of traffic  $\rightarrow$  Less Synchronizable



### Improving synchronization on Complex Networks

Synchronization in Networks with heterogeneous degree distribution could be improved if links are properly weighted



A<sub>ij</sub> = Adjancecy Matrix

Load=betweenes: measure the traffic of each link



# Array Enhanced Stochastic Coherence & Synchronization

 Are they really incompatible phenomena?
 Does it exist a <u>network architecture</u> showing <u>strong synchronizability</u> and high levels of <u>stochastic coherence</u>?

We analyze excitable dynamical units on Weighted (by its load) Scale Free Networks (WSFN).



### **Dynamical Model**



### **Connectivity** Networks







Weighted Networks Synchronize better!







### Spike and Subthreshold Synchronization

- ✓ Time series: Spike signal + subthreshold signal
- ✓ We separate spike and subthreshold dynamics contributions to synchronization

![](_page_17_Figure_3.jpeg)

![](_page_17_Figure_4.jpeg)

![](_page_18_Figure_0.jpeg)

### Synchronization & SC vs degree

![](_page_18_Figure_2.jpeg)

 $\checkmark$  Weighting behavior balance the heterogeneity of the SF networks

![](_page_19_Picture_0.jpeg)

## Conclusions

- Synchronization and Stochastic
  Coherence seems not to be compatible phenomena.
- We show that both collective behaviors can be found together in Weighted Scale Free Networks
- The weighting procedure balance the intrinsic heterogeneity of the SFN giving optimal conditions for synchronization as well as Stochastic Coherence

Balenzuela, Rue, Boccaletti & Garcia-Ojalvo, ArXiv:1309.2184v1 (2013)

## Thank you!

![](_page_20_Picture_1.jpeg)

## The key-role of normalization

![](_page_21_Figure_1.jpeg)

## The key-role of normalization

![](_page_22_Figure_1.jpeg)

## The key-role of normalization

![](_page_23_Figure_1.jpeg)

![](_page_24_Picture_0.jpeg)

### Weight Distributions

![](_page_24_Figure_2.jpeg)

### Improving synchronization on Complex Networks

Synchronization in Networks with heterogeneous degree distribution could be improved if links are properly weighted

![](_page_25_Figure_2.jpeg)

### Coupling enhances Stochastic Coherence

### <u>Heuristic</u>

 ✓ Resonance occurs when noise makes the neuron fires after each refractory period.

✓ Coupling enhances SC:

 $\checkmark$  Firing of a neighbor reminds a given element to fire at the "correct time"

![](_page_26_Figure_5.jpeg)

### Previous Results

- B. Hu & C. Zhou, PRE (2000) → Array Enhance Stochastic Coherence (AESC) (NN Ring of FN Neurons with Diffusive Coupling and Gaussian noise)
- C. Zhou, J. Kurths and B. Hu, PRL (2001) → Heterogeneity & Independent Noise Favours AESC (NN Ring of FN Neurons with Diffusive Coupling and Gausian Noise)
- O. Kwon and H.T Moon, Phys.Lett A (2002) → SC persist in SW Networks (HH neurons on WS networks)