A new model for Time-Varying Graphs

Klaus Wehmuth, Artur Ziviani, and Eric Fleury

Workshop on Dynamic Networks 2013

Buenos Aires, Argentina

WDN 2013 - Buenos Aires, Argentina - November 5-7th

Dynamic Networks

Social networks

Face to face contacts networks

Brain activity networks

Distributed systems

•••

i.e., any environment where relations between objects vary in time

Dynamic Networks Represented by Time-Varying Graphs (TVGs)

Time-Varying Graphs Representation issues

Don't look and feel like graphs

Some are not totally discrete

use continuous time edges

Auxiliary assumptions needed

node memory

time interval intersections

Time-Varying Graphs Our proposed representation model

- G = (V, E, T)
 - V Node set
 - E Edge set
 - T Time instants set

Dynamic Edges

 $\mathsf{E} \subseteq \mathsf{V} \times \mathsf{T} \times \mathsf{V} \times \mathsf{T}$

$$e \in E, e = (n_1, t_a, n_2, t_b)$$

 $n_1, n_2 \in V$ - nodes $t_a, t_b \in T$ - time instants

A dynamic edge expresses a relation between two nodes at two time instants

Dynamic Edges

 $\mathsf{E} \subseteq \mathsf{V} \times \mathsf{T} \times \mathsf{V} \times \mathsf{T}$

$$e \in E, e = (n_1, t_a, n_2, t_b)$$

Are represented by an ordered quadruple

Can be represented by an entry on a **4th order tensor**

Temporal Node Representation

- G = (V, E, T) $e = (n_1, t_a, n_2, t_b)$ v
- $\mathbf{u},\mathbf{v}\in\mathsf{Vs}=\mathsf{V}\times\mathsf{T}$
- $e_s = (u, v) \in Vs \times Vs = Es$

Gs = (Vs, Es) $\Omega: V \times T \rightarrow Vs$ $e_s \in Es \longleftrightarrow e \in E$

Dynamic Edges

Temporal Edges Spatial Edges Mixed Edges

TVG Paths

Paths are established by dynamic edge adjacency

Two dynamic edges are adjacent if they are incident to a common temporal node

TVG Cycles

A cycle is a closed path, i.e. a path that starts and ends on the same temporal node

Adjacency Tensor in Matrix Form

Proposed model as a unifying model

It represents other TVG models that don't necessarily represent each other

Snapshot Model Representation

$$Mat(A_{G1}) =$$

Kostakos 2009 Model Representation

Take Away Messages

The new model we propose for representing TVGs

Can represent commonly used previous models Shows a static graph closely related to a TVG Does not use external assumptions

Laboratório Nacional de Computação Científica

Klaus Wehmuth & Artur Ziviani LNCC

{klaus,ziviani}@Incc.br

Eric Fleury

eric.fleury@inria.fr

Thanks!

Conselho Nacional de Desenvolvimento Científico e Tecnológico FAPERJ

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Next steps...

Further analysis of properties

Algebraic analysis

Temporal centralities

•••

Progressive Dynamic Edges

Regressive Dynamic Edges

Adjacency Tensor Progressive Edges to \mathbf{t}_1 t2 3 0 t₁ t₀ t2

$$Mat(\mathbf{A}_{G1}) =$$

Adjacency Tensor Spatial Edges

Adjacency Tensor Mixed Edges

$$Mat(\mathbf{A}_{G1}) =$$

TVG shortest paths

Between temporal nodes

TVG shortest paths

Temporal node to node

TVG shortest paths

Node to temporal node

Node to node

