

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

Combinatorial Models of Complex Systems

M.G. Beiró

Facultad de Ingeniería Universidad de Buenos Aires

November 7th, 2013

Complex Networks and Data Communications Group

Topics

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet

Social Networks Community Structure

Extension: Community Discovery

Conclusions

Introduction

Complex Systems Example Models of Complex Systems Aims

2 Contributions

Internet Clustering Social Networks: Community Structure

3 Extension: Community Discovery

Topics

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Networks Community

Extension: Community Discovery

Conclusions

1 Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet Clustering Social Networks: Community Structure

- **3** Extension: Community Discovery
- 4 Conclusions

Complexity Sciences

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems

Contributions

Internet Clustering

Social Networks Community Structure

Extension: Community Discovery

Conclusions

Large number of variables -

Unformalized relations -

Organic (macroscopic) description -

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Interdisciplinarity -

What makes a system complex?

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems

Example Models of Complex Systems Aims

Contributions

Internet

Social Networks: Community

Extension: Community Discovery

Conclusions

- Emergence
 - · Collective behavior, global function
 - · Not present in the individual components
- Self-Organization
 - Presence of an ordered structure
 - Spontaneous and decentralized

< 17 > <

Example: Social Networks

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example

Models of Comple: Systems Aims

Contributions

Internet

Social Networks Community

Extension: Community Discovery

Conclusions

Properties

- Modular structure
 - Communities
- Small-world phenomenon
 - Small average distances
 - High clustering
- Assortative mixing

Relevant problems

- Spreading (information, epidemics, rumors)
- Predict group behavior (segregation, mixing, opinion)
- Understand social relationships

Modeling complex systems

イロト イポト イヨト イヨト

э

Aims of this work

Combinatorial Models of Complex Systems

M.G. Beiró

- Introduction
- Complex Systems Example Models of Complex Systems Aims
- Contributions
- Internet
- Social Networks Community
- Extension: Community Discovery
- Conclusions

We aimed at...

- Studying combinatorial models
- Proposing efficient models
- Evaluating the performance
- Evaluating scalability
- Visualizing results

Topics

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Network Community

Extension: Community Discovery

Conclusions

Introduction

Complex Systems Example Models of Complex Systems Aims

2 Contributions

Internet Clustering Social Networks: Community Structure

3 Extension: Community Discovery

Occursion

Our contributions

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

1 Connectivity in the Internet

Olustering in networks

3 Social networks: Discovery of community structure

Internet

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

- Internet
- Clustering
- Social Networks Community Structure
- Extension: Community Discovery
- Conclusions

Two main levels

- The inter-router level (IR)
- The Autonomous Systems level (AS)
 - Internet backbone

e.g., LEVEL3, HURRICANE, ...

- Transit ASes (e.g., medium-sized ISPs)
- Stubs

Internet Some results on the Internet topology

Combinatorial Models of Complex Systems

M.G. Beiró

- Introduction
- Complex Systems Example Models of Comple Systems Aime
- Contributions
- Internet
- Clustering
- Social Network Community Structure
- Extension: Community Discovery
- Conclusions

- Design of exploration techniques
 - CAIDA, DIMES, RouteViews projects
- · Power-laws on the degree distribution
 - Both at the IR-level and the AS-level [FFF99]
- Disassortative mixing
 - Disassortative behavior at the AS-level [PSVV01]
 - Robust-yet-fragile
- Design of hierarchical models
 - Jellyfish model [STF06]
 - MEDUSA model [CHKS07]
 - k-core decomposition [AHDBA08]

Revealed a rich hierarchical structure

Internet Our contribution: Estimating Internet AS connectivity

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Models of Complex Systems

Contributions

Internet

Clustering

Community Structure

Extension: Community Discovery

Conclusions

(picture generated with LaNet-vi)

• Sufficient conditions for assuring connectivity *k* in *k*-cores [AHBB11]

Internet Our contribution: Estimating Internet AS connectivity

Clustering

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Clustering

Social Networks Community Structure

Extension: Community Discovery

Conclusions

Clustering:

- Presence of triangles in the network
- Consequence of correlations between nodes
- Effect on the structural and dynamical properties

The Watts-Strogatz model was the first with high clustering coefficients [WS98]

In this work, we compare the hierarchical and modular structure of clustered network models

Clustering Maximally-ordered (CB) vs. Maximally-random (MR)

Combinatorial Models of Complex Systems

M.G. Beiró

- Introduction Complex Systems Example Models of Complex Systems Aims
- Contributions
- Internet
- Clustering
- Social Networks Community Structure
- Extension: Community Discovery
- Conclusions

Maximally-ordered network (CB model)

- Fixed degree distribution, p(k)
- Fixed clustering distribution, C(k)
- Build a set of cliques
- Join cliques with configuration model

Clustering Maximally-ordered (CB) vs. Maximally-random (MR)

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction Complex Systems Example Models of Complex Systems Aims

Contributions

- Internet
- Clustering
- Social Networks Community Structure
- Extension: Community Discovery
- Conclusions

Maximally-random network (MR model)

- Fixed degree distribution, p(k)
- Fixed clustering distribution, *C*(*k*)
- Define an exponential random graph
- Minimize Hamiltonian
 - Node rewiring
 - Simulated annealing

Clustering *k*-dense decomposition

Combinatorial Models of Complex Systems

M.G. Beiró

- Introduction Complex Systems Example Models of Complex Systems Aims
- Contributions
- Internet
- Clustering
- Social Networks Community Structure
- Extension: Community Discovery
- Conclusions

- Based on the notion of edge multiplicity
- Edge multiplicity is the number of common neighbors between the edge endpoints
 - A k-dense is a maximal subgraph such that every edge has multiplicity at least (k - 2) inside the subgraph [SYK08]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Clustering *k*-dense decomposition: Algorithm

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Clustering

Social Networks Community Structure

Extension: Community Discovery

Conclusions

M.G. Beiró Combinatorial Models of Complex Systems

Clustering Positioning algorithm

Combinatorial Models of Complex Systems

M.G. Beiró

- Introduction Complex Systems Example Models of Complex Systems
- Aims
- Contributions
- Internet
- Clustering Social Netwo
- Community Structure
- Extension: Community Discovery
- Conclusions

- A connected component (CC) may split when we consider the (k + 1)-dense
 - Each CC is drawn into a circle
- Circles are randomly placed
- Random re-positioning until circles do not overlap

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Clustering PGP

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Clustering

Social Network Community Structure

Extension: Community Discovery

Conclusions

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

- Community structure is the presence of groups of densily connected vertices
- Also called modular structure
- · Found in many complex systems
 - · Friendship networks, collaboration networks
 - The World Wide Web
 - Metabolic networks, networks of protein interactions
- · But the concept lacks of a precise notion
 - Sometimes it depends on the application

 $\exists \rightarrow$

Social Networks: Community Structure State of the art

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

- Complex Systems Example Models of Comple Systems Aims
- Contributions
- Internet
- Social Networks: Community Structure
- Extension: Community Discovery
- Conclusions

- Notion of community
 - Concept of web community [FLG00]
 - Communities in the scientific collaboration network [New01]
- Some of the first methods:
 - Edge-betweenness, dendrogram [GN02]
 - Edge-clustering [RCC⁺04]
 - Modularity maximization
 - Label propagation (diffusion process) [RAK07]
 - INFOMAP (minimum description length) [RB08]
 - Lancichinetti's natural community (overlapping) [LFK09]

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Clustering

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

Our method has 3 ingredients:

- A fitness function with a resolution parameter
- A growth process
 - The process "spreads" throughout the graph
 - The fitness function always increases
 - The resolution parameter is dynamically updated
- A cutting technique

The result:

• A partition into communities

Social Networks: Community Structure Results

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

The method was tested in:

- Simple networks (karate, football, jazz, ...)
- Large real networks (web-Stanford (2M), LiveJournal (42M))
 - Power-law in the community size distribution
- LFR benchmark
 - Good performance in terms of the normalized mutual information

Social Networks: Community Structure Results: Stanford.edu web graph

M.G. Beiró Combinatorial Models of Complex Systems

Social Networks: Community Structure Results: Benchmark LFR

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

- Network instances with 1000 vertices
- Variable mixing parameters [0,05-0,80]

Topics

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering

Social Networks Community Structure

Extension: Community Discovery

Conclusions

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet Clustering Social Networks: Community Structure

3 Extension: Community Discovery

4 Conclusions

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

Our method has 3 ingredients:

- A fitness function
- A growth process
- A cutting technique

Its complexity is:

- Temporal: $O(n(G) \cdot d_{\max} + e(G) \cdot \log(n(G)))$
- Spatial: O(n(G) + e(G))

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

- Internet Clustering
- Social Networks: Community Structure

Extension: Community Discovery

Conclusions

Given a subset $C \in V(G)$, we define the fitness function $H_t(C)$ as:

$$H_t(C) = m_V(C) \left(1 - \frac{m_V(C)}{2t}\right) - c_E(C) \tag{1}$$

- What is $m_V(C)$?
 - Relative "mass" of C
- What is $c_E(C)$?
 - Relative external degree of C

- Combinatorial Models of Complex Systems
 - M.G. Beiró
- Introduction
- Complex Systems Example Models of Complex Systems Aime
- Contributions
- Internet
- Social Networks
- Structure
- Extension: Community Discovery
- Conclusions

• The growth process incorporates vertices into the set C, one after the other

• It always chooses the one which maximizes ΔH

• When no vertex can increase *H* we increase the resolution *t* as little as possible

Combinatorial Models of Complex Systems

M.G. Beiró

- Introduction
- Complex Systems Example Models of Complex Systems Aims
- Contributions
- Internet
- Social Networks: Community

Extension: Community Discovery

Conclusions

- What is the result?
 - The growth process always prefers to incorporate vertices in the same local community
 - When a community ends, we must incorporate a vertex from another community

Tipically, the resolution must be increased at this point

• Thus, the communities are traversed one after the other

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering

Community Structure

Extension: Community Discovery

Conclusions

Each community evolves as $C_1, C_2, \ldots, C_{FINAL}$ We observe the behavior of the function:

・ロト ・回ト ・ヨト ・

Social Networks: Community Structure The growth process: An example

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering Social Networks Community Structure

Extension: Community Discovery

Conclusions

The "football" network:

<ロト < 回 > < 回 > < 回 >

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

• **२**

11

• 41

Internet Clustering Social Networks Community

Structure

Extension: Community Discovery

Conclusions

Stanford.edu web graph (250000 vertices) \rightarrow Induced subgraph with **30 consecutive communities** Node positioning according to the *k*-dense decomposition with LaNet-vi

Social Networks: Community Structure Community visualization with Snailvis

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering

Community Structure

Extension: Community Discovery

Conclusions

(picture generated with SnailVis)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Topics

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet

Social Networks Community

Extension: Community Discovery

Conclusions

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet Clustering Social Networks: Community Structure

S Extension: Community Discovery

Conclusions

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

1 Connectivity in the Internet

- Proposal estimator for edge-connectivity in the Internet based on the k-core decomposition
- Edge-connectivity visualization with the LaNet-vi software

Olustering in networks

- Efficient implementation of the k-dense decomposition
- Development of a visualization tool for comparing clustered network models

3 Social networks: Discovery of community structure

- Proposal of a local community detection algorithm
- Visualization of community structure and evolution with the SnailVis software

・ロト ・ 日 ・ ・ 日 ・

Conclusions

Combinatorial Models of Complex Systems

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

- We performed a complexity analysis for each proposed algorithm
- We used visualization as a tool for understanding complex systems structure

Possible future lines of work:

- New criteria for evaluating quality of community structure
- Further applications of the *k*-dense decomposition

M.G. Beiró

Introduction

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet Clustering

Community Structure

Extension: Community Discovery

Conclusions

Thank you!

M.G. Beiró Combinatorial Models of Complex Systems

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Ξ

M.G. Beiró

Introduction

Complex Systems Example Models of Complex Systems Aims

Contributions

Internet

Social Networks Community

Extension: Community Discovery

Conclusions

J.I. Alvarez-Hamelin, M.G. Beiró, and J.R. Busch.

Understanding edge connectivity in the internet through core decomposition. Internet Mathematics, 7(1):45–66, 2011.

J.I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, and Vespignani A.

k-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. *Networks and Heterogeneous Media*, 3(2):371, 2008.

S. Carmi, S. Havlin, S. Kirkpatrick, and E. Shir.

A model of internet topology using k-shell decomposition. *PNAS*, 104:11150–11154, 2007.

M. Faloutsos, P. Faloutsos, and C. Faloutsos.

On power-law relationships of the internet topology.

In Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, SIGCOMM '99, pages 251–262, New York, NY, USA, 1999. ACM.

G.W. Flake, S. Lawrence, and C.L. Giles.

Efficient identification of web communities.

In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '00, pages 150–160, New York, NY, USA, 2000. ACM.

M. Girvan and M.E.J. Newman.

Community structure in social and biological networks.

Proceedings of the National Academy of Sciences, 99(12):7821-7826, June 2002.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3

M.G. Beiró

Introductior

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet

Social Network

Structure

Extension: Community Discovery

Conclusions

A. Lancichinetti, S. Fortunato, and J. Kertész.
Detecting the overlapping and hierarchical community structure in complex networks. <i>New Journal of Physics</i> , 11(3):033015, 2009.
M.E.J. Newman.
The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2):404–409, January 2001.
R. Pastor-Satorras, A. Vázquez, and A. Vespignani.
Dynamical and correlation properties of the internet. Physical Review Letters, 87:258701+, 2001.
U.N. Raghavan, R. Albert, and S. Kumara.
Near linear time algorithm to detect community structures in large-scale networks. <i>Physical Review E</i> , 76(3):036106+, September 2007.
M. Rosvall and C.T. Bergstrom.
Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123, 2008.
F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi.
Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 101(9):2658, 2004.
G. Siganos, S.L. Tauro, and M. Faloutsos.
Jellyfish: A conceptual model for the as internet topology.

Journal of Communications and Networks, 8(3):339-350, 2006.

<ロト <回ト < 回ト < 回ト < 回ト -

 \equiv

M.G. Beiró

Introductior

Complex Systems Example Models of Comple Systems Aims

Contributions

Internet

Social Networks: Community Structure

Extension: Community Discovery

Conclusions

K. Saito, T. Yamada, and K. Kazama.

Extracting communities from complex networks by the k-dense method. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E91-A(11):303-3311, November 2008.

D.J Watts and S.H. Strogatz.

Collective dynamics of small-world networks. *Nature*, 393:440–442, 1998.

<ロト < 回 > < 回 > < 回 > .

3