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SIS epidemics

 Epidemics is a fundamental problem concerning spread of
information to diseases

recovery

infection




Classical Approach

* nodes have state

 contagion occurs through edges
 states of nodes change over time

e epidemic structure is fixed



More Recent Approach

* individuals have state and move around the network
* infection occurs upon encounter

e state and position of individuals change over time

 two coupled dynamics: mobility and epidemic




» network structure G = (V, E) with n = |V| nodes

« kL individuals move independently according to identical

continuous-time random walks
- holding time in node is exponentially distributed with rate A

- transition takes zero time and neighboring node chosen uniformly at random

* infection occurs with probability 7 upon encounter

 recovery exponentially distributed with rate “) , independently




Example
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Exact Model

e System state : position and state of every individual
position: v;(t) € {1,...,n}

X(t) = X1, k(vilt), si(2))
state:  Si(t) € {S, I}

*  Number of infected individuals: I (t) = Zle 1{s;(t) =1}

. {X(t)} is characterized by continuous-time Markov chain:

_ state space is large: (2n)"
- absorbing set (all individuals susceptible): S_A — Xi:1,m,k(’vi, S)

e  Metric of interest: E[I(t)]

- exact meta-stationary (transient) solution is hard



Known Results for RW

. o
* random walk position in steady state: 7; = n g
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* encounter rate of two random walks: w = 2\ E (7Tj)2
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Simulations: Results
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 epidemic intensity increases with density

 behavior depends on network structure



Simulations: Results

0.9 o
0.8

0.7

-¢- complete graph
-¢- torus
-¢-ring

0.6

0.4 ,'I
0.3 !
0.2/

01 e cemmecd

recovery time —

g
 epidemic intensity increases with recovery time

 behavior depends on network structure



Approximate Model
 Based on classical epidemic ODE-models
- determine infection (S->1) and recovery (I->S) rates H

2\

- encounter rate of two random walks: w =

n
- three different types of encounter:
— I(k=D)

- probability that encounter is between individuals S and I : Pgj; = ( )

N &

al k
* ODE-based model: — = Psr —~1
ased mode 7 <2>w7' ST — 7Y

kA
» threshold for onset of epidemic: Ry = 2——
n-y



Approximate Model: Results
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e approximate model very accurate for complete graph and
inaccurate for torus and ring




e encounters are bursty in torus and ring despite same average
encounter rate
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New Mechanism to estimate encounter rate

Number of encounters when walkers are together at time 0
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« € (t) : average number of encounters by time 7 given that they are
together at time 0.




New Mechanism to estimate encounter rate

e we are interested in when the next encounter will occur after
one of them recovers

1. : time for next encounter after Ty = —

27y
 approximate by the number of encounter in steady state:

w(To + E[Te]) — 6(T0) —+ 1

1 W
¢ nhew encounter rate: (9 = p—

TO + E[Te] Q(To) -+ 1

dl k
* newequation: — — O Poar — ~1
p (2> TS — 7



Preliminary Results
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Conclusion

Epidemic model on networks with mobility

Coupled dynamics induces non trivial behavior
- regular symmetric networks have different epidemic behaviors

ODE approach seems adequate if correctly parameterized
- need proper S/ encounter rate

Challenge (ongoing work): parameterize encounter rate
- for non regular networks as well







