SIS Epidemics based on Random walks in Networks

Pedro Younes

Daniel R. Figueiredo

Stefanella Boatto

Department of Systems Engineering and Computer Science (PESC/COPPE)

Department of Applied Mathematics (DMA/IM)

Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro - Brazil

Workshop on Dynamic Networks

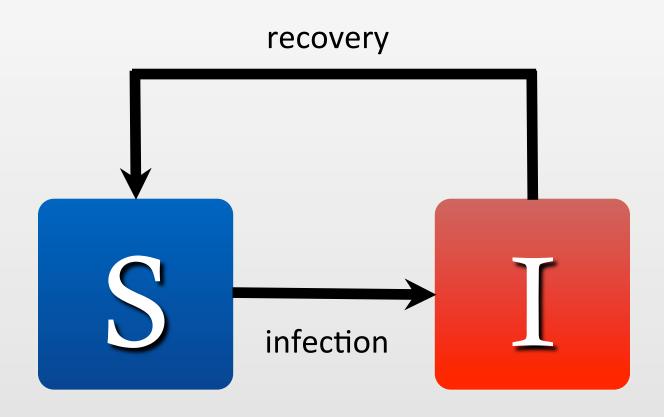
November 6th, 2013 -- Buenos Aires, Argentina

Outline

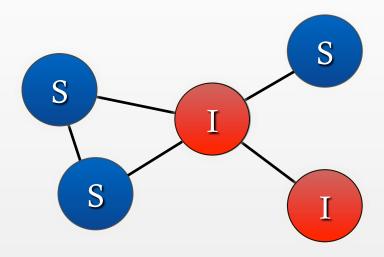
- SIS model with mobility
- Simulations
- Approximate model
- Conclusion

SIS epidemics

Epidemics is a fundamental problem concerning spread of information to diseases

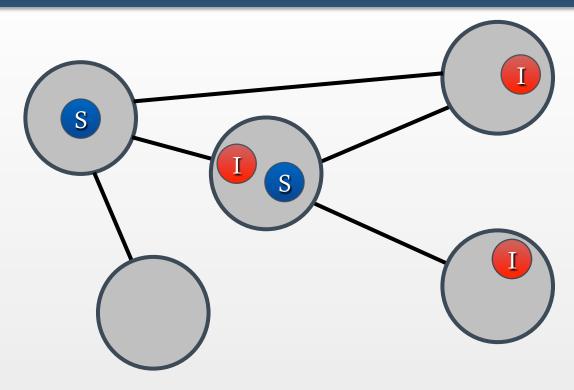


Classical Approach



- nodes have state
- contagion occurs through edges
- states of nodes change over time
- epidemic structure is fixed

More Recent Approach

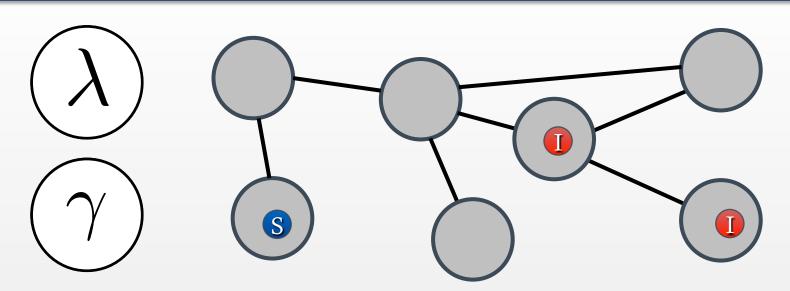


- individuals have state and move around the network
- infection occurs upon encounter
- state and position of individuals change over time
- two coupled dynamics: mobility and epidemic

Model

- ullet network structure $\,G=(V,E)\,$ with $\,n=|V|\,$ nodes
- $oldsymbol{k}$ individuals move independently according to identical continuous-time random walks
 - holding time in node is exponentially distributed with rate λ
 - transition takes zero time and neighboring node chosen uniformly at random
- infection occurs with probability ${\mathcal T}$ upon encounter
- recovery exponentially distributed with rate $\, \gamma \,$, independently

Example



Parameters	value
n nodes	7
$oldsymbol{k}$ individuals	3
i_0 initial infected	2
movement rate λ	1
recovery rate $ \gamma $	5
infection probability $ au$	1

 $\text{low density}: \frac{k}{n} << 1$

inter-step time: $\frac{\lambda}{\gamma}$

Exact Model

System state: position and state of every individual

$$X(t) = imes_{i=1,\dots,k}(v_i(t),s_i(t))$$
 position: $v_i(t) \in \{1,\dots,n\}$ state: $s_i(t) \in \{S,I\}$

- Number of infected individuals: $I(t) = \sum_{i=1}^k \mathbb{1}\{s_i(t) = I\}$
- $\{X(t)\}$ is characterized by continuous-time Markov chain:
 - state space is large: $(2n)^k$
 - absorbing set (all individuals susceptible): $\mathcal{S}_{\mathcal{A}} = imes_{i=1,\dots,k}(v_i,S)$
- ullet Metric of interest: E[I(t)]
 - exact meta-stationary (transient) solution is hard

Known Results for RW

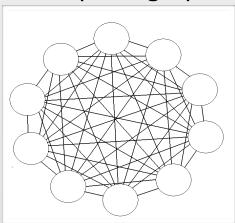
random walk position in steady state: $\pi_j = \frac{d_j}{\sum_{i=1}^n d_i}$

encounter rate of two random walks: $\ \omega = 2\lambda \sum_{j=1}^{\infty} (\pi_j)^2$

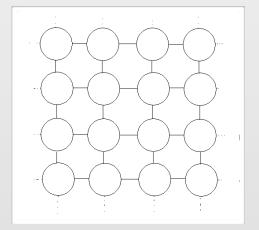
On regular networks:

$$\pi_j = \frac{1}{n} \qquad \omega = 2\lambda \sum_{j=1}^n (\frac{1}{n})^2 = \frac{2\lambda}{n}$$

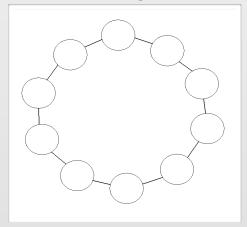
complete graph



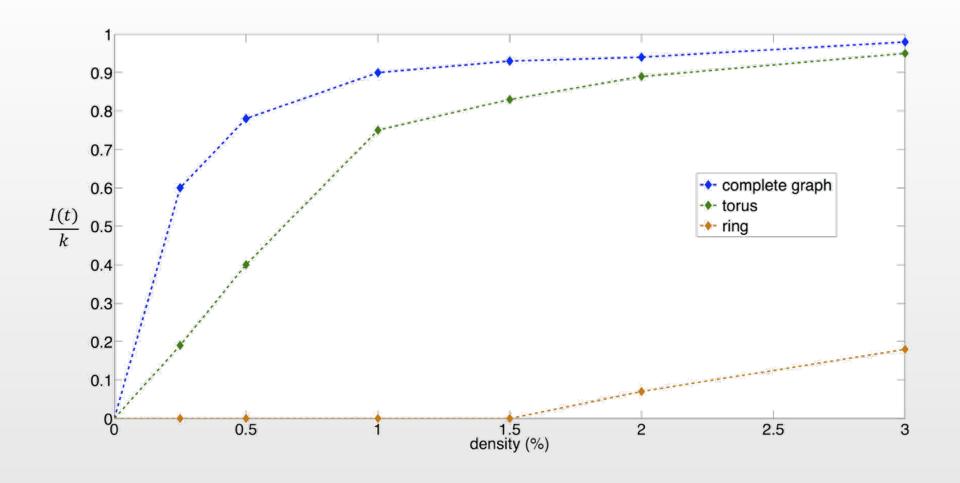
2d torus



ring

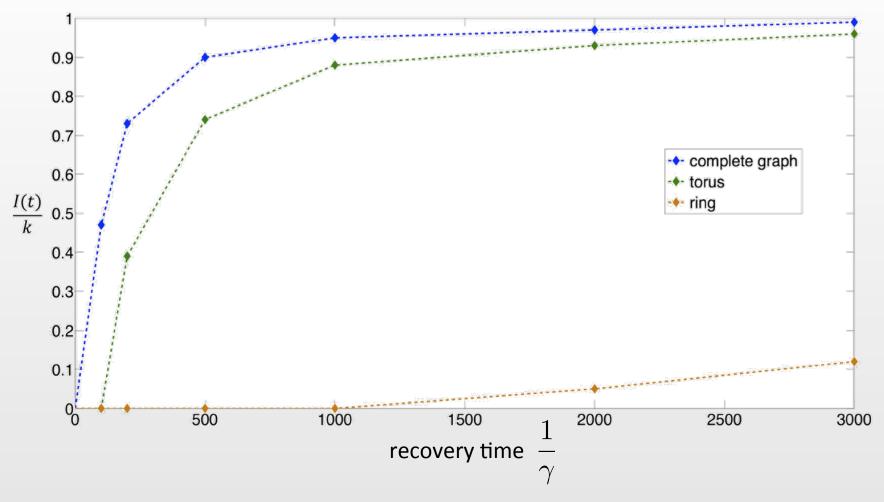


Simulations: Results



- epidemic intensity increases with density
- behavior depends on network structure

Simulations: Results



- epidemic intensity increases with recovery time
- behavior depends on network structure

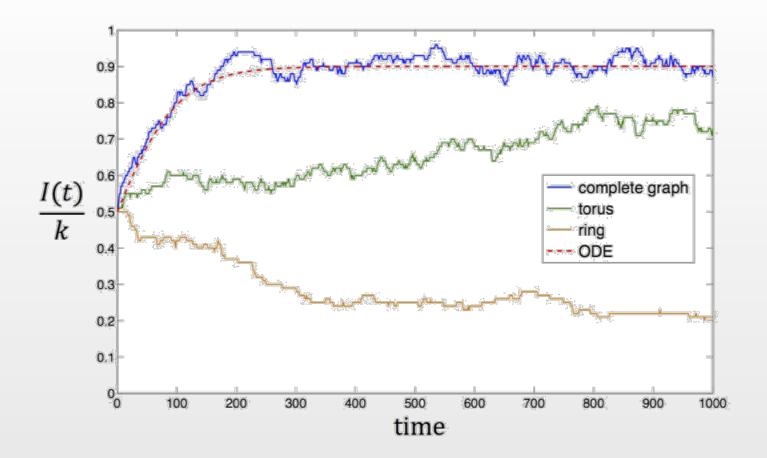
Approximate Model

Based on classical epidemic ODE-models

- determine infection (S->I) and recovery (I->S) rates
- encounter rate of two random walks: $\omega = \frac{2\lambda}{n}$
- three different types of encounter:

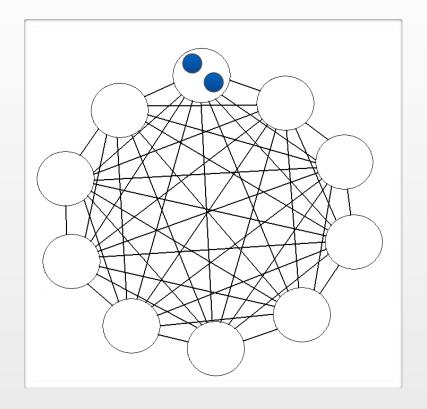
- probability that encounter is between individuals S and $I: P_{SI} = \frac{I(k-I)}{{k \choose 2}}$
- ODE-based model: $\dfrac{dI}{dt} = \binom{k}{2} \omega au P_{SI} \gamma I$
- threshold for onset of epidemic: $R_0 = 2\frac{k}{n}\frac{\lambda}{\gamma}$

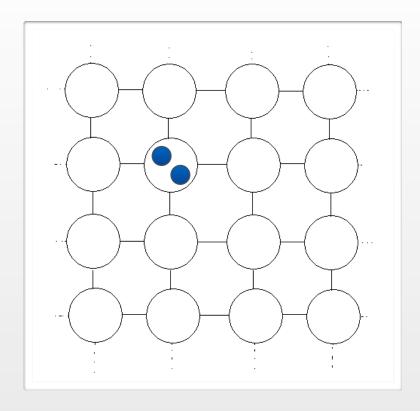
Approximate Model: Results



approximate model very accurate for complete graph and inaccurate for torus and ring

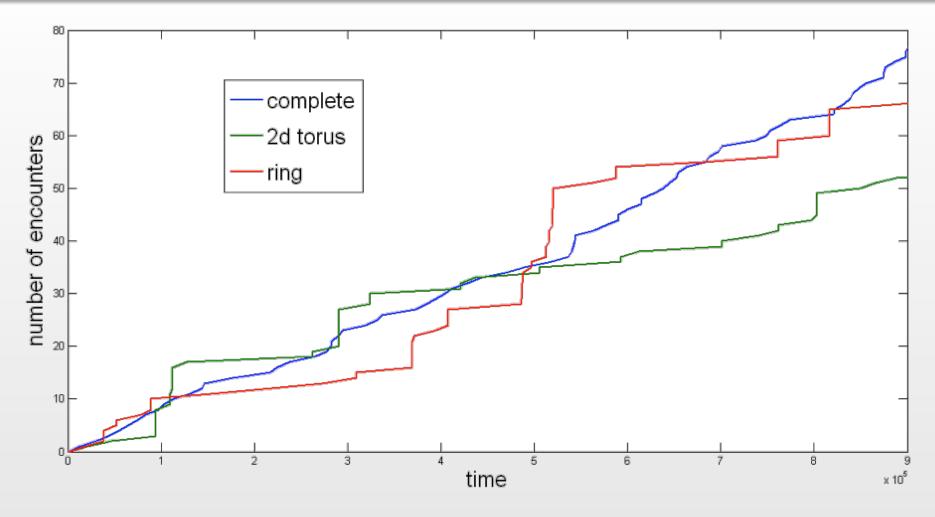
Problem





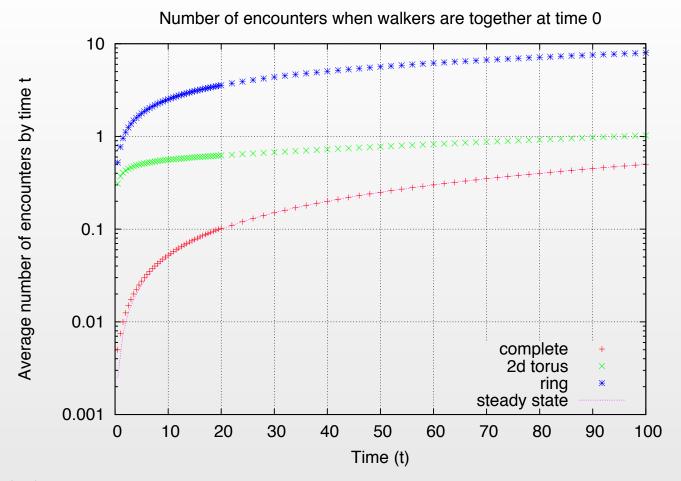
encounters are bursty in torus and ring despite same average encounter rate

Problem



encounters are bursty in torus and ring despite same average encounter rate

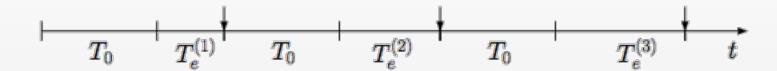
New Mechanism to estimate encounter rate



• e(t) : average number of encounters by time t given that they are together at time 0.

New Mechanism to estimate encounter rate

 we are interested in when the next encounter will occur after one of them recovers



- T_e : time for next encounter after $T_0=rac{1}{2\gamma}$
- approximate by the number of encounter in steady state:

$$\omega(T_0 + E[T_e]) = e(T_0) + 1$$

- new encounter rate: $heta=rac{1}{T_0+E[T_e]}=rac{\omega}{e(T_0)+1}$
- new equation: $\dfrac{dI}{dt} = \binom{k}{2} heta au P_{SI} \gamma I$

Preliminary Results



better approximation with the new encounter rate

Conclusion

- Epidemic model on networks with mobility
- Coupled dynamics induces non trivial behavior
 - regular symmetric networks have different epidemic behaviors
- ODE approach seems adequate if correctly parameterized
 - need proper $S\!I$ encounter rate
- Challenge (ongoing work): parameterize encounter rate
 - for non regular networks as well

